
Flexible Workflows for Knowledge Management in the Digital Design

Mirjam Minor, Daniel Schmalen, Ralph Bergmann Andreas Koldehoff
University of Trier sci-worx GmbH, Garbsener Landstr. 10

D-54286, Trier, Germany D-30419, Hannover, Germany
{minor,schmalen,bergmann}@uni-trier.de andreas.koldehoff@sci-worx.com

Abstract

This paper presents work in progress on an adap-
tive workflow management tool for digital de-
sign projects. The chip design follows stan-
dardized default processes which are adapted
during an ongoing project by changing require-
ments from both design and application uncer-
tainties. Our approach focuses on flexible moni-
toring and case-based authoring support of adap-
tive workflows in order to support the knowledge
management in a real-world application.

1 Introduction
“If EDA tools∗ are to assist the semiconductor industry
at the 90nm† and 65nm nodes, there must be profound
changes to existing tools, and the introduction of new tech-
nologies that allow designers to consider and optimize for
manufacturing at each stage of the design, verification,
tape-out and test process” demands Janusz Rajski, Men-
tor Graphics [Rajski, 2006]. The chip design in the nano
era operates near the physical and technological limits –
Infineon is about to develop even 45nm technology until
midyear 2008. When starting projects with a new, smaller
technology new types of errors may emerge. It is uncertain
whether the old algorithms will work well under the new
conditions. The requirements for the chip design process
are high: A very tight time to market gets in conflict with
the need for first time right delivery. The first layout that
is manufactured has to be error free in order to avoid re-
spins as the return to the design process and the way back
to the chip foundry again are expensive and time consum-
ing. A delay of some weeks leads to a high risk to loose
the market. Like the technological imponderabilities, the
uncertainty of the customer requirements may cause adap-
tations of the ongoing chip design process. This complex
task requires a careful knowledge management.

This article presents concepts for a tool that supports the
repeated reconsideration and adaptation of the ongoing de-
sign process by means of flexible workflow technology. It
focuses on monitoring and authoring support capabilities
for adaptive workflows. Our work is a result of the close
collaboration of the University of Trier – as a subcontractor
– with the microelectronics company sci-worx in the URA-
NOS project.

Section 2 describes the digital design domain and how
workflow instances evolve during the design projects by
late and lean modeling. Section 3 deals with a model of

∗EDA = Electronic Design Automation
†nm = nanometer

context factors for authoring and monitoring purposes. In
Section 4, we sketch our ideas for a monitoring that sup-
ports risk management. Finally, Section 5 contains a dis-
cussion of related work and the steps that we will do next.

2 Incremental and flexible workflow
modeling

We aim to support the digital design process by a new
workflow tool. It allows an incremental and flexible mod-
eling of design processes. Initial workflow instances fol-
lowing a default workflow definition are adapted during the
ongoing project.

2.1 Initial workflow instances
The design flow is a standardized description of the step
by step design process for all digital design projects of a
company. The initial workflow instances are derived from
a workflow definition that follows that design flow. SciWay
2.0 the design flow of sci-worx describes the four high-
level phases of a project that consist of several sub-phases
each:

1. Specification

2. Implementation and verification

3. FPGA synthesis and validation

4. ASIC synthesis

The specification is more than the customer require-
ments specification (CRS) and can take up to two month
or even longer. The main work after the negotiation of
the CRS with the customer is to write the specifications
of the implementation, of the verification, and of the vali-
dation. The second phase, implementation and verification,
includes in parallel the implementation in a Hardware De-
scription Language (HDL), the HDL verification, and the
implementation of the validation software. The synthesis
is the generation of a layout that goes to the chip foundry.
The verification is the functional check against the specifi-
cation, while the validation (also called ’testing’) is more
’hardware-related’ and checks, for instance, the resistance
to heat or whether a processor boots. Field Programmable
Gate Arrays (FPGA’s) are designed as a pre-stage of the
Application Specific Integrated Circuits (ASIC’s). FPGA’s
follow the building-block concept to be thoroughly vali-
dated before the prototype is transformed into an ASIC.
Some of the testing tasks within the third and fourth phases
can be automated. The literal synthesis is strongly sup-
ported by tools as well.

Sometimes, sci-worx needs to execute only a part of the
design flow. Some customers come with already finished



specifications; some projects end already after the FPGA
synthesis; some customers even perform the FPGA valida-
tion on their own.

Figure 1: The workflow definition following SciWay 2.0.

Figure 1 shows a sample workflow definition in UML
2.0 notation [Ambler, 2006] following the phases and sub-
phases of the design flow in SciWay 2.0. In terms of the
workflow patterns of Aalst et al. [van der Aalst et al.,
2003], our workflow modelling language consists of the
five basic control flow patterns sequence, parallel split, syn-
chronization, exclusive choice, and simple merge, as well
as of structured cycles (loops) and placeholder tasks for
sub-workflows. The rounded boxes describe the tasks; the
arrows model the sequence of tasks. Some tasks can be per-
formed in parallel like the implementation and verification.
The fork symbol in a task hides the sub-diagrams not to
be confused with sub-workflows that have an own context
(see Section 3). The sand-glass stands for the date of the
milestone number 6 that includes the final delivery. Dates
are valid for all workflow instances that belong to a project.

The initial workflow instances of a project are generated
from a list of modules by means of a standard workflow
definition which is more complex than the sample in Fig-
ure 1. Modules are sets of functional elements that can be
tested as a unit.

2.2 Evolution of workflow instances
Modifications of the workflow instances are mainly trig-
gered by change requests either from the customer or from
the designers themselves. Besides changing a date, they
may concern three types of structural modifications:

1. add or delete a task

2. split or bundle workflow instances or sub-diagrams

3. reschedule a workflow instance

Modifications within loops are valid for all future itera-
tions. Figure 2 provides an example of a workflow instance
that has been modified by an additional task ’Concretisize
CRS’ namely to select one of two open alternatives from 2-
level or 3-level motion estimation. The reason for this mod-
ification was a change request from the designers to specify
an open feature in the CRS. We decided to model an own
task for it rather than a loop backwards to the specification
task as the CRS document is part of the contract with the
customer and can not be changed. Instead, a change request
document is stored in addition to the CRS.

A workflow instance or sub-diagram can be split into
several instances and sub-diagrams respectively when the
implementation specification is refined or when a change
request requires a finer degree of granularity. For instance,
when the customer requires a simplified version of a func-
tional element earlier than the sophisticated version, the
workflow sub-diagram on this functional element is split

Figure 2: Extend the workflow instance on ’motion estima-
tion’ by a new task.

into two sub-diagrams with different milestones. A clone
operation supports the workflow modeller in splitting both
sub-diagrams or whole workflow instances. In opposite to
a normal copy the clone operation skips tasks that have al-
ready been completed by the master.

A sample of rescheduling is given in Figure 3 and 4. The
adaptations are triggered by a sequence of change requests
from the customer. The workflow instance is on the module
’motion vector prediction’.

Figure 3: Remove verification and synthesis of ’motion
vector prediction’.

The first change request (as depicted in Figure 3) is a
result of the fact that the customer requires an accelera-
ted schedule. An intermediate delivery M4.5 with reduced
functionality has been arranged. The features will be im-
plemented but not verified until this intermediate delivery.
When the verification tasks for the module ’motion vector
prediction’ have to be finished is still in negotiation.

Figure 4: Reschedule verification and synthesis of ’motion
vector prediction’.

Later on, a second change request is created that defines
that the module shall be fully verified for the final delivery
M6. That means that the workflow instance has to be ex-
tended by the verification tasks as shown in Figure 4. In
parallel, there has to be done some additional implementa-



tion at least for the verification software. And afterward,
the synthesis tasks follow.

2.3 Late and lean modeling
At the very beginning of a project, the functional ele-
ments of the workflow instances are only rough features
from the CRS. During the implementation specification,
the workflow instances are refined according to the mod-
ules of the future implementation. Later on, change re-
quests trigger adaptations of the particular workflow in-
stances as decribed above.

Due to this late modeling, the complexity of the
workflow instances increases during the life cycle of a
project. The granularity of the functional elements depends
on the degree of agility that the project has reached. A rule
of thumb is to model only things that have to be done by
different persons or that deviate from the standard design
flow. We do this in the roughest possible granularity and
call it lean modeling.

The overall set of workflow instances of a project is or-
ganized within a top-level workflow instance that contains
the sub-workflows for the modules.

2.4 Suspension of workflow instances
The execution of a workflow instance may take a long time.
It has to be suspended during modeling activities by the
user. The user may even withdraw an ongoing task from a
worklist. We have developed a lock mechanism with break-
points that are set and released by the user. Setting a break-
point stops the ongoing tasks that lie within the focus of
the breakpoint and suspends the execution of further tasks
in the locked area. We have specified rules for each im-
plemented workflow pattern how locks are propagated and
released again.

A suspension may endure several weeks, e.g. if a de-
cision of a customer is awaited. When the breakpoint has
been lifted, the workflow engine determines where to con-
tinue the execution. As we do not model the data flow ex-
plicitely this is quite easy.

3 The context model
We extend the workflow model from Section 2 by a context
model for authoring support and monitoring purposes. The
workflow instances are embedded into a set of partially in-
terdependent context factors. Besides factors from the de-
sign context, e.g. the employed EDA tools, we consider
also the application context, e.g. the risk that the function-
ality might change due to the development of the end user
requirements and the market. Table 1 shows some samples
of context factors.

Context factors are represented as attributes with one or
several attribute fields. Each attribute field has exactly one
value type defined. The following value types are allowed:

• Boolean

• Single integer value

• Multiple integer value

• Percentage

• Single float value

• Multiple float value

• Date

• Time in hours

• Time in weeks

• Single value from a given pickup list

• Multiple value from a given pickup list

• Free-text

• Risk factor (has two slots: single value from a given
pickup list for the degree of damage, probability of
occurrence in percentage)

The value types of the sample context factors in Table 1
including the pickup lists are specified in Table 2. The un-
derlined values are default values. For example, the algo-
rithms risk contains an estimation how many algorithms are
still risky and how important this is. An algorithm is risky
when it has not yet been implemented with a certain tech-
nology. Then the performance and sometimes even the im-
plementability is unknown in advance. The default value
for this context factor is ’Cleared’. Interdependencies be-
tween units may be specified by means of binary depen-
dencies between context factors.

The context factors are remembered for the following
purposes:

• We give authoring support for the manual adaptation
of workflow instances by retrieving similar workflow
instances and presenting their subsequent adaptation
steps. The case base consists of pairs of subsequent
revisions of past workflow instances while the first re-
vision of the two forms the problem part and the sec-
ond, with the modification operations that have been
performed, the solution part of the case. The con-
text factors contribute to the similarity values for past
workflow instances in addition to the structure and the
state of the workflow instance. For example, the em-
ployed EDA tools are important to identify workflow
instances with a similar context.

• Some of the context factors are risk factors that may
be explicitly monitored by means of the system. An
example is the verification grade of the specification
that has to be monitored especially when external de-
vices are employed or own IP’s are reused. Further-
more, the context acquisition tool provides the utily of
risk analysis for the current state of a project.

• Before a modification to a sub-workflow is applied the
modeller may use the utility of dependency analysis
that infers the modules (and sub-workflows) that are
depending on the module either directly or indirectly.

• Some rather administrative context factors like the
dates of milestones are used for monitoring the state
of a design project (see Section 3).

Following the classification schema for workflow contexts
of Maus [Maus, 2001], the context factors for the author-
ing support including the risk analysis and the dependency
analysis belong to the information dimension as well as the
explicitly monitored risk factors while the factors used for
monitoring the state of a design project belong to the his-
tory dimension.

As for the workflow modeling, the principle of late and
lean modeling holds also for the context factors: Only fac-
tors are acquired at the beginning of a project that have
an important impact on the success of the whole project.
Later on, they might be extended by context factors for sin-
gle workflow instances in order to improve the authoring
support. The values of context factors can change when the
project progresses. Context factors that are not yet acquired
have either empty values or pre-defined default values. We



are planning to implement a tool for the context acquisi-
tion with a configurable set of factors. The users may even
wish to add context factors during runtime like specifying
further milestones. New context factors are restricted to
previously well-defined issues.

The monitoring of agile workflow instances is a chal-
lenging task. It allows the users to observe the state of the
ongoing project and supports the risk management of cru-
cial context factors.

The requirements for the monitoring are:

• to browse the hierarchy of the workflow instances, i.e.
the module level and the level of functional elements,

• to allow the user to navigate within one instance, i.e.
between tasks and sub-tasks as well as in the temporal
dimension,

• to distinguish finished and open tasks, and

• to present the current state of the risk factors.

The project managers can use the monitoring to survey
the status of the design flow including the change requests.
That means the tool is able to support change request mana-
gement. The annotation of context factors provides support
for the risk management of projects. The designers can use
the monitoring when joining a running project.

4 Related and future work
The CAKE system [Freßmann et al., 2005] handles short
term workflows and provides the dynamic assignment of
sub-workflows. It uses sets of context factors to perform a
case-based retrieval of appropriate sub-workflows. We are
planning to extend CAKE for long-term workflows in the
URANOS project.

CBRFlow [Weber et al., 2005] is a conversational CBR
tool for workflow management that captures the reasons
for an adaptation in a dialog with the user. The workflow
system ADEPT [Reichert et al., 2003] allows the adaption
of processes at both the process instance and the process
type level. The implementations of ADEPT and CBRFlow
are about to be integrated. In opposite to ADEPT, we
do not model the data flow explicitely. Furthermore, the
correctness of an adapted instance is not (yet) checked
and our workflow definition does not yet evolve. We use
the workflow definition for starting a default process that
is adapted only at the instance level with both standard
variations as illustrated in Figure 2 and ad-hoc changes.
Potentially, some standard variations may emerge during
the usage of the system and give hints for adapting also
the workflow definition in future work. Like CBRFlow,
URANOS will employ CBR to support the adaptation of
workflow instances. URANOS will use structural CBR
rather than conversational CBR, as our users are used to
work with complex software tools and are supposed to
be faster in specifying attribute values than in formulating
questions. An authoring support agent will present previ-
ous modifications of similar workflow instances concern-
ing the structure and the context factors of the workflow in-
stance. This aims to decrease the manual effort for adapting
workflow instances by reuse. Both CBRFlow and ADEPT
do not support long-term suspension of certain areas of a
workflow as it is required for the URANOS project.

FRODO task man [van Elst et al., 2003] deals with late
modeling of workflows, i.e. the hierarchy of sub-tasks
is extensible after enacting a workflow. In URANOS,
the functional split of a workflow instance is similar to

FRODO’s model. In contrast of FRODO, the late modeling
will be supported by CBR.

The MTCT system[Bassil et al., 2004] applies ADEPT
for the processing of client requests for container trans-
portation. It is related to our approach as it uses templates
but in a simpler manner than we do: The templates are only
for activities; the overall set of templates is fix. The fo-
cus of MTCT lies on time optimization by automatic re-
scheduling. In our approach, the focus lies on assisting the
user who determines the scheduling by means of closed in-
teraction with the customer.

The case handling approach[van der Aalst et al., 2005]
is slightly related to our work. It introduces three roles
for users: the execute, the redo, and the skip role. Both
redo and skip do not make structural changes of ongoing
workflow instances. They are possible in our approach as
well as in ADEPT, CBRFlow and FRODO.

The main issues of our future work is to implement and
evaluate our authoring support concepts in a case study, and
to develop a concept for the system’s monitoring capabili-
ties.

5 Acknowledgment
The authors acknowledge the Federal Ministry for Edu-
cation and Science (BMBF) for funding URANOS under
grant number 01M3075. We acknowledge the assistance
we have received from both Stefan Pipereit, sci-worx and
Marko Höpken, sci-worx as well.

References
[Ambler, 2006] Scott W. Ambler. UML

2 Activity Diagrams. Internet: http://
www.agilemodeling.com/artifacts/activityDiagram.htm,
2006. [Last visited: February 2006].

[Bassil et al., 2004] Sarita Bassil, Rudolf K. Keller, and
Peter G. Kropf. A workflow-oriented system architec-
ture for the management of container transportation. In
Jörg Desel, Barbara Pernici, and Mathias Weske, edi-
tors, Business Process Management: Second Interna-
tional Conference, BPM 2004, Potsdam, Germany, June
17-18, 2004. Proceedings, LNCS 3080, pages 116 –
131. Springer, 2004.

[Freßmann et al., 2005] Andrea Freßmann, Rainer Maxi-
mini, and Thomas Sauer. Towards collaborative agent-
based knowledge support for time-critical and business-
critical processes. In Klaus-Dieter Althoff, Andreas
Dengel, Ralph Bergmann, Markus Nick, and Thomas
Roth-Berghofer, editors, Professional Knowledge Man-
agement: Third Biennial Conference, WM 2005, LNAI
3782, pages 420 – 430, Kaiserslautern, Germany, April
2005. Springer-Verlag Berlin Heidelberg 2005.

[Maus, 2001] Heiko Maus. Workflow context as a means
for intelligent information support. In Varol Akman,
Paolo Bouquet, Richmond H. Thomason, and Roger A.
Young, editors, Modeling and Using Context, Third
International and Interdisciplinary Conference, CON-
TEXT, 2001, Dundee, UK, July 27-30, 2001, Proceed-
ings, LNCS 2116, pages 261 – 274. Springer-Verlag,
2001.

[Rajski, 2006] Janusz Rajski. Shifting Perspectives
on DFM, keynote talk at the International Sympo-
sium on Quality Electronic Design 2006. Internet:
http://www.isqed.org/, 2006. [Last visited: January
2006].



[Reichert et al., 2003] Manfred Reichert, Stefanie
Rinderle, , and Peter Dadam. Adept workflow man-
agement system: Flexible support for enterprise-wide
business processes (tool presentation). In W. M. P. van
der Aalst et al., editor, Proc. International Conf. on
Business Process Management (BPM ’03), Eindhoven,
The Netherlands, June 2003, LNCS 2678, pages 370 –
379. Springer Verlag, 2003.

[van der Aalst et al., 2003] Wil M. P. van der Aalst, Arthur
H. M. ter Hofstede, Bartek Kiepuszewski, and Alistair P.
Barros. Workflow patterns. Distributed and Parallel
Databases, 14(1):5 – 51, 2003.

[van der Aalst et al., 2005] Wil M. P. van der Aalst, Math-
ias Weske, and Dolf Grünbauer. Case handling: a new
paradigm for business process support. Data Knowl.
Eng., 53(2):129 – 162, 2005.

[van Elst et al., 2003] Ludger van Elst, Felix-Robinson
Aschoff, Ansgar Bernardi, Heiko Maus, and Sven
Schwarz. Weakly-structured workflows for knowledge-
intensive tasks: An experimental evaluation. In 12th
IEEE International Workshops on Enabling Technolo-
gies (WETICE 2003), Infrastructure for Collaborative
Enterprises, 9-11 June 2003, Linz, Austria, pages 340 –
345. IEEE Computer Society, 2003.

[Weber et al., 2005] Barbara Weber, Stefanie Rinderle,
Werner Wild, and Manfred Reichert. CCBR-Driven
Business Process Evolution. In Héctor Muñoz-Avila
and Francesco Ricci, editors, Case-Based Reasoning,
Research and Development, 6th International Confer-
ence, on Case-Based Reasoning, ICCBR 2005, Chicago,
IL, USA, August 23-26, 2005, Proceedings, LNAI 3620,
pages 610 – 624. Springer, 2005.



Table 1: Sample specification of context factors.
Context category Attributes
Risk estimation End user and Algorithms risk

market risk
Technology risk Tools risk

Functionality Clearness of
functional
specification Uncertainty of
(list of open customer
formulations) requirements

Validation ...
Verification Degree of

verification Verification
concerning capability
specification

Technology ...
Tools EDA tools Support tools
Pins and registers Pins/ports Registers
SW/HW-Codesign Interaction soft-

ware/hardware
External devices External IP External software
Design rules ...
Milestones M1 M2 M3 M4 M5 M6

Table 2: Sample value types for Table 1.
Attribute name Data type Range of values

{will be fixed immediately, will cause a short loop
End user and Risk will cause a long loop, has fatal consequences},
market risk [0...100]

{will be fixed immediately, will cause a short loop
Algorithms risk Risk will cause a long loop, has fatal consequences},

[0...100]
...

EDA tools multiple value from {Mentor Graphics LeonardoSpectrumTM,
a pickup list Mentor Graphics PrecisionTM RTL Synthesis,

Synplicity, Synplify, Synplify Pro,
Synopsys FPGA Compiler IITM, ...}

...
Pins/ports single integer value {1, 2, ..., n}
Registers single integer value {1, 2, ..., n}

...


