
Structural adaptation of workflows
supported by a suspension mechanism and by case-based reasoning

Mirjam Minor, Daniel Schmalen, Andreas Koldehoff*, Ralph Bergmann
University of Trier, Department of Business Information Systems II

54286 Trier, Germany
{minor, schmalen, bergmann}@uni-trier.de

*Silicon Image GmbH, Garbsener Landstr. 10

30419 Hannover, Germany
andreas.koldehoff@siliconimage.com

Abstract

Collaborative, long-term processes with changing
requirements occur in several domains. In design and
manufacturing, we observed the following particular
characteristics: the process models can be huge and
contain longsome decisions while the time to market is
tight. Furthermore, different types of products have to
be considered. In this paper, we present an approach
of new, flexible workflow technology that provides a
solution for this: The ongoing workflows can be
adapted by means of late-planning and ad-hoc
changes. A suspension mechanism allows the workflow
designers to modify parts of a workflow while the
remainder of the workflow can continue to be executed.
A case-based reasoning approach supports the reuse
of past experience for this.

1. Introduction

Th. Herrmann reports the observation that “many
collaborative tasks in companies can be partly seen as
recurrent routines but partly use to contain innovation.
... This phenomenon will increase with the dynamics of
the market and its requirements to the flexibility of the
company and to the individual customer care.” [4, p.
145, own translation]. Traditional workflow systems
are able to support the recurrent tasks quite well. In
order to deal with the flexible, innovative part, the
workflows have to be adaptable. Even more, in highly
flexible domains like medicine or chip design
situations occur where the ongoing workflows need to
be changed. For instance, an alternative measure has to
be taken when a certain therapy is not successful for a
patient or when a certain algorithm does not work for a

new chip technology. This may happen unexpectedly
or may require a major adaptation of the ongoing
process. Both of them can not be handled by traditional
workflow systems.

In this paper, we present an approach of new,
flexible workflow technology that has been driven by
our URANOS project in cooperation with the chip
design industry. We focus on issues of the workflows’
representation, execution, suspension, and structural
adaptation of ongoing workflows. A case-based
reasoning (CBR) approach supports the users in
reusing past experience with the adaptation of
workflows for adapting current workflows.

In the literature, there are already approaches of
flexible workflow technology that support the
structural adaptation of ongoing workflows. Late-
planning and hierarchical decomposition [10, 3] are
one way to modify ongoing workflows. Another way is
given by ad-hoc changes of the workflow structure [8,
11]. The ad-hoc changes of workflows have been
applied successfully for the medical domain, for
instance. However, we derived some crucial
requirements from an analysis of the chip design
domain that are not met by the existing approaches:
• Huge process models with thousands of tasks

require that some parts of a workflow continue
with the execution of tasks while other parts are
being modified.

• Decisions may take some time with the
consequence of delayed workflow modeling
activities. As above, the workflow should not
pause completely due to tight time constraints.

• The coexistence of different product types (i.e.
chip types in our scenario) requires configurable
contexts: The context of workflows has to be

compound individually while sharing the
vocabulary for this with other workflows.

• Experience from the adaptation of workflows in
the past should be reused for the adaptation of an
ongoing workflow. Unlike the existing
approaches, we cannot guarantee that we have
additional information like context information [3,
10] or conversational knowledge [11] for this.
Consequently, the retrieval of the past workflows
should consider the workflows’ structure directly
rather than solely operating on additional
information.

In order to meet these requirements, we have
developed an approach of new, flexible workflow
technology that we present as follows: In Section 2, we
describe the basic, incremental modelling approach for
workflows. Section 3 deals with the control flow part
of the workflows, while Section 4 examines the context
part. Within Section 3, both, the workflow language
and a tree representation of workflows are designed in
a way that enables the suspension of workflows. In
Section 5, we introduce our authoring support
approach by means of case-based reasoning. In Section
6, we discuss our approach and draw a conclusion.

2. Handling flexible workflows

Our workflow approach facilitates structural
changes of the ongoing workflows. This allows an
incremental modeling approach: Initial workflow
instances are derived from a set of templates the so-
called workflow definitions. The ongoing workflow
instances can be modified by ad-hoc changes and by
late-planning.

Acquisition

Customer requirements
specification

Negotiation

Dummy design unit

Top-level
project execution

Project acceptance Maintenance

P4
occurred
P4
occurred

P3.0
occurred
P3.0
occurred

Project planning Design flow

Project
context

Design flow

Figure 1. The workflow definition of a design

project following SciWay 2.0.

Figure 1 shows an UML activity diagram of a
sample workflow definition that we modeled for the
chip design domain as template for new projects. Each
workflow definition consists of a control flow structure

of tasks and of a context model. The context model has
the aim to document factors that have a significant
impact on the workflows. The target frequency of the
chip, for instance, is quite important for the design
process: In case it is missed by a chip component, this
has an impact on other components that may have to be
redesigned. Of course, this affects also the control flow
of the according workflow(s). The control flow
structure follows the design flow ‘SciWay 2.0’, i.e. a
standardized description of the step by step design
process for all digital design projects of our industrial
partner sci-worx.

HDL
implementation

Unit specific
review HDL

implementation
[L L]

[Review not ok]

[Review ok]

ASIC synthesis

Specification
(unit specific part)

P3.1
occurred
P3.1
occurred

P3.2
occurred
P3.2
occurred

P3.3
occurred
P3.3
occurred

Preliminary
ASIC synthesis

Preliminary
FPGA synthesis

Unit
context

Figure 2. The workflow definition of a design

unit following SciWay 2.0.

3. Control flow structure of workflows

The control flow structure is modeled in a well-defined
workflow language that we describe in the following
subsection. The execution uses an internal tree-
representation that we present afterwards. For both, the
modeling and the execution, we have designed special
elements and mechanisms that prepare them for the
suspension and adaptation of workflows.

Workflow modeling language

The workflow language that we used is based on the
notation of workflow patterns introduced by van Aalst
et al [9]. Our workflow modelling language consists of
the five basic control flow elements (workflow
patterns) sequence, AND-split, AND-join, XOR-split,
and XOR-join as well as of loops. We regard loops as
structured cycles with one entry point to the loop
(LOOP-join) and one exit point from the loop (LOOP-
split). A diamond with an '[L', one incoming and
several outgoing arrows with conditions in squared
brackets stands for the LOOP-split; a diamond with an
'L]', several incoming and one outgoing arrows stands
for the LOOP-join (see Figure 2). For reason of

adaptability, we have extended this model by three
own workflow elements:
• placeholder tasks for sub-workflows are depicted

as rounded boxes with double borders (see Dummy
design unit in Figure 1).

• placeholder tasks for sub-diagrams are marked by
a fork symbol (see Top-level project execution in
Figure 1);

• breakpoints are symbolized by stop signs (see
Figure 6).

Sub-diagrams have only been invented for reasons of
clarity. This hierarchical concept is only introduced in
order to decompose large workflows into parts which
can be easier shown in the GUIs. In opposite to sub-
workflows, sub-diagrams do not have an own
workflow engine nor an own context. Breakpoints are
necessary for the control of modifications in a
workflow instance. Setting a breakpoint prevents the
workflow engine from overrunning tasks that are about
to be modified.

Tree representation

The control flow elements form building blocks.
For instance, the sequence of tasks between the LOOP-
join and the LOOP-split in HDL implementation in
addition in Figure 6 belong to a LOOP-block. Building
blocks cannot be interleaved but they can be nested.
For example, in Figure 2, the AND-block is an inner
block of a sequence which belongs to the outer LOOP-
block. The building block concept allows us to
represent the workflow instances by means of a tree-
oriented data structure. This structure can be processed
in a quite straightforward implementation.

In the tree representation, the nodes represent the
particular workflow elements (tasks, placeholder tasks,
control flow elements or breakpoints) by different
types of nodes. Each type of node encapsulates the
execution logics of its workflow element, for instance
the parallel execution of the children of an AND-node.
We explain this further by means of a short example:
Assume that we have derived a workflow instance
called Design unit XY from the workflow definition in
Figure 2 and, to simplify matters, replaced the sub-
diagrams by plain tasks, e.g. the sub-diagram ASIC
synthesis by the task ASIC synthesis. Additionally, we
set a breakpoint between the LOOP-split and the ASIC
synthesis task. This sample workflow instance is
represented by the tree in Figure 3 as follows: The root
node of the tree is labeled by the name of the (sub-)
workflow (see the legend of Figure 3). Tasks are
represented by leaves (see 1 to 6 in Figure 3). A
sequence node (S) contains a set of elements that are
executed in a serial way from the left to the right.

Other control flow elements (L for loops, A for AND’s,
X for XOR’s) have solely sequences as children that
are processed according to the semantics of the parent
node. Breakpoints (B) are represented as leave nodes of
sequence nodes. The sample in Figure 3 contains a
break point between the loop block and task six. The
set of node types within the tree structure is easily
extendible, for instance by a new type of node (O) for
OR-blocks.

S

1 L B

S

2 A 5

S

6

S

3 4

R = Design unit XY
B = Breakpoint

Control flow elements
S = Sequence
L = Loop
A = And

Tasks
1 = Specification
2 = HDL implementation
3 = Preliminary FPGA synthesis
4 = Preliminary ASIC synthesis
5 = Review HDL implementation
6 = ASIC synthesis

R

Figure 3. The workflow instance of the design

unit XY.

For execution purposes, every node is enriched with
engine relevant data such as the state of processing.
Additionally, the task nodes contain particular task
data, e.g. the roles of potential executors. The
execution of the tree is realized with an event concept.
Whenever the state of a workflow element changes the
particular node fires an event to the children or parents
according to its semantics. The receivers decide how to
handle it, e.g. to propagate it or to fire further events to
its children or parents. For instance, when the task 2
(HDL implementation) in Figure 3 is being completed,
it fires an event to the parent S. This node generates a
new triggering event and fires it to the AND node. The
AND node triggers 3 (Preliminary FPGA synthesis)
and 4 (Preliminary ASIC synthesis) via its children
sequence nodes. Some events are able to cross the
borders of workflow instances via the sub-workflow
placeholder tasks. For example, this is necessary in
case the error handling of a sub-workflow has failed.

In order to prepare the workflow instances for ad-
hoc changes, we have invented the new concept of
master copies for the handling of loops. With this
concept, we are able to distinguish the past and the
future parts of the workflow unambiguously. It is a
crucial prerequisite for ad-hoc changes within a loop-
block. We do not support modifications of particular
iterations; all changes are valid for every future
iteration. The master copies are created incrementally;
each workflow element that has been activated or

marked as omitted in an inactive branch of an XOR-
block will be copied to the master. Figure 4 shows a
brief example of a workflow instance that contains a
loop-block with a sequence of two tasks.

L

S

1 2

R

L

S

1 2

R

S‘

L

S

1 2

R

S‘

1‘

L

S

1 2

R

S‘

1‘ 2‘

S‘‘

first iteration second iteration

master copy

activated

Figure 4. A workflow instance with a loop.

At the beginning of the first iteration, the loop node
L is activated by R. Second, S is started and a copy of
S is linked to L as first element of the master. S
controls the serial execution of the two tasks 1 and 2.
For each task that is activated a copy of the task is
attached to the corresponding location in the master
(see step 3 in Figure 4). As soon as all children of the
sequence are completed, L receives an event that the
first iteration has been finished. L has to decide
whether a second iteration will be started. In case it is,
the sequence S’ is executed, a further master S’’ is
created, and the above described mechanism is
repeated. In the other case, L is marked as completed
and the parent of the loop receives a notification.

4. Configurable workflow contexts

Besides of the control flow structure, a workflow
has a context model (see Figure 1). Discussions with
chip designers led us to the decision to develop a
configurable context model. For each type of product,
the context model can be tailored to the appropriate set
of context factors. For instance, security aspects play a
major role in the automotive area while factors from
the application context like the number of pixels of a
camera are more important for consumer products. Our
analysis of change request documents from the chip
domain has yielded several interdependencies between
context factors. For instance, the output pins of a chip
segment have a direct impact on the input pins of a
successor chip. We have chosen to organize the context
in an ontology-based model in order to describe
interdependencies.

Figure 5 depicts the top-level ontology for our
context model. We distinguish two areas for the
definition and the application of context factors:

Figure 5: The top-level ontology of the context
model.

1. FactorCategory, FactorDefinition and all its

descendant classes (BooleanFD, DateFD, etc.)
belong to the pool of context factors. The pool
contains the definitions of the factors including the
value types and default values.

2. Project, ProjectUnit and Factor with its
descendants (BooleanFactor, DateFactor, etc.) are
for the assignment of factors to project units and
their unit-specific values.

We use Protégé conform owl as a context exchange

format. The users are able to exchange either the pool
of factors only or in combination with the actual
application of this pool to projects. We have selected
owl because it extends RDF and XML by expressions
in description logics (DL) that we use for some
properties and restrictions of the relations, e.g. for the
property that hasDefinition is functional and for the
existence restriction concerning hasDefinition in
Factor. These two sample expressions mean that
hasDefinition must be specified for each instance of
Factor with exactly one instance of FactorDefinition.

The context model can be configured by means of
our context acquisition tool. We hide the complexity of
the owl format from the users. For further information
on the implementation of the context acquisition tool,
we refer to the literature [6].

5. Authoring support for the adaptation of
workflows

The experience that is contained in an ongoing
workflow instance and the changes applied to it can be
captured within cases according to the CBR approach.
The cases are stored within a case base that can be
queried by the user. A query is a description of the

current problem situation, i.e. a current workflow
instance that is to be modified. The result of the
retrieval is a list of the best matching cases from the
case base. The past solution from a retrieved case can
be reused in order to adapt the current workflow. At
the moment, the user has to transfer the solution for
adapting the current workflow manually, but in future,
we will investigate to what degree this can be
supported automatically by proposing potential
adaptations.

A case consists of a pair of subsequent revisions of
a workflow instance [X, X’]. The previous revision X
is the problem part of the case; X’ - the revision of the
workflow instance that has already been modified - is
the solution part of the case.

Figure 6. Revision of a sub-workflow instance.

Figure 6 shows a sample revision of a sub-workflow
instance that has been derived from the workflow
definition in Figure 2. It has developed from the initial
workflow instance in two adaptation steps: First, it has
been extended by the additional task Check whether
feature set is confirmed. Second, Update
implementation specification and the sub-diagram with
the placeholder task HDL implementation in addition
have been inserted later on. The context model may
have been changed as well, for instance, by modifying
the value of a context factor. The two adaptation steps
of the workflows’ structure and the context model form
two subsequent revisions X and X’ of the workflow
instance. They can be stored as a sample case in our
case base where X is the problem part and X’ the
solution part of the case.

In order to determine the best matching cases to a
query workflow instance, we use a similarity function
that compares the query pair wise with the particular
cases of the case base. The resulting similarity values
induce an order of cases. The best matching cases are
the retrieval result. The similarity function requires an
appropriate representation of the cases. Luo et al. [5]

have developed a building block similarity for
traditional workflows that would fit quite well to the
tree representation that we have used for the execution
of workflows. Unfortunately, this method is not
suitable for changes of the order of workflow elements
what is typical for our workflows. Minor changes, for
instance, moving a task to a different block lead to
major restructuring activities within the building block
tree and consequently seems to impact the similarity
values to a too high degree. Due to this, we have
developed an alternative representation for retrieval
purposes (see below). The cases can be transformed
automatically to this retrieval-specific representation.

The retrieval-specific representation of a workflow
instance in a particular revision has two parts: one for
the control flow structure of tasks and another one for
the context model. The context is represented by a
structural CBR approach with attribute-value pairs in a
straightforward way. The representation of workflows’
structure makes use of the fact that the instances are
derived from a particular workflow definition. As the
instances usually differ only slightly from their
templates, they can be described by means of the
difference to their workflow definition. A workflow
definition is represented as a set of elements, such as
tasks and control flow elements, as well as a successor-
predecessor-relation on this set. The difference
between an ongoing instance and its workflow
definition covers the following issues:
1. the structural modifications of tasks and control

flow elements
2. the state of processing

Both can be encoded by sets for added and deleted
workflow elements with respect to the original
template. Hereby, completed tasks as well as passed
control flow elements are regarded as deleted.

The similarity of the workflows’ structure is
computed based on graph edit distances [3] that make
use of the sequences of add and delete operations [7].
The similarity of context models is be computed
according to the local-global-principle of the structural
CBR approach [1]. Both of the similarity values for
context and structure are aggregated to an overall
similarity value.

6. Discussion and conclusion

We have presented an approach of new, flexible
workflow technology that has been motivated
empirically by our analysis of the chip design domain
but is not restricted to this domain. It is applicable for
further domains with collaborative, long-term
processes under changing requirements like software
engineering or flexible manufacturing.

The state of the Java implementation of our
approach is the following: the prototypical core of the
workflow engine has been implemented; the context
acquisition tool is already under evaluation at our
industrial partner sci-worx; the further GUI’s and the
authoring support component are still under
development. Our prototype will be integrated with the
CAKE system [3] as an additional component.

The benefits of our system are the following: The
system is able to deal with huge process models with
thousands of tasks as it supports late-planning and ad-
hoc changes of workflows. The adaptations are
embedded in a sophisticated suspension mechanism
that supports the users to find a good balance between
tight deadlines on the one hand and changing
requirements as well as delayed decisions on the other
hand. The configurable context model extends the
workflows’ structure in order to document the
experience with the development of different product
types. A case-based retrieval mechanism supports the
reuse of experience for the adaptation of ongoing
workflows.

7. Acknowledgements

The authors acknowledge the Federal Ministry for
Education and Science (BMBF) for funding URANOS
under grant number 01M3075. We acknowledge the
assistance we have received from both Stefan Pipereit,
Silicon Image and Marko Höpken, Silicon Image as
well as of further chip design experts from AMD,
Infineon, and Cadence.

8. References

[1] R. Bergmann. Experience Management: Foundations,
Development Methodology, and Internet-Based Applications.
LNAI 2432. Springer-Verlag, Berlin, 2002.

[2] H. Bunke, B.T. Messmer. Similarity measures for
structured representations. In M. M. Richter et al., editors,
Preproceedings EWCBR-93, First European Workshop on
Case-Based Reasoning, pages 26–31. University of
Kaiserslautern, 1–5 Nov 1993.

[3] A. Freßmann, R. Maximini, and T. Sauer. Towards
collaborative agent-based knowledge support for time-critical
and business-critical processes. In K.-D. Althoff et al.,
editors, Professional Knowledge Management: Third
Biennial Conference, WM 2005, LNAI 3782, pages 420 –
430, Springer-Verlag Berlin Heidelberg 2005.

[4] Th. Herrmann: Lernendes Workflow. In Th. Herrmann,
A.W. Scheer, H. Weber, editors.: Verbesserung von
Geschäftsprozessen mit flexiblen Workflow-Management-
Systemen, pages 143 – 154, Physica-Verlag, Heidelberg,
2001.

[5] Z. Luo, A. Sheth, K. Kochut, B. Arpinar. Exception
handling for conflict resolution in cross-organizational
workflows. Distributed and Parallel Databases 13(3), 271 –
306, 2003.�

[6] M. Minor, D. Schmalen, A. Koldehoff, R. Bergmann:
Configurable Contexts for Experience Management. In
Gronau, N., ed.: 4th Conference on Professional Knowledge
Management - Experiences and Visions. Vol. 2., Potsdam,
Univ. of Potsdam, GITO-Verlag Berlin, 119 – 126, 2007.

[7] M. Minor, A. Tartakovski, R. Bergmann. Representation
and Structure-based Similarity Assessment for Agile
Workflows. 10th International Conference on Case-Based
Reasoning, accepted for publication.

[8] M. Reichert, S. Rinderle, and P. Dadam. Adept workflow
management system: Flexible support for enterprise-wide
business processes (tool presentation). In W. M. P. van der
Aalst et al., editor, Proc. International Conf. on Business
Process Management (BPM ’03), LNCS 2678, pages 370 –
379. Springer Verlag, 2003.

[9] W. M. P. van der Aalst, A. H. M. ter Hofstede, B.
Kiepuszewski, and A. P. Barros. Workflow patterns.
Distributed and Parallel Databases, 14(1):5 – 51, 2003.

[10] L. van Elst, F.-R. Aschoff, A. Bernardi, H. Maus, and S.
Schwarz. Weakly-structured workflows for knowledge-
intensive tasks: An experimental evaluation. In 12th IEEE
International Workshops on Enabling Technologies
(WETICE 2003), Infrastructure for Collaborative
Enterprises, 9-11 June 2003, Linz, Austria, pages 340 – 345.
IEEE Computer Society, 2003.

[11] B. Weber, S. Rinderle, W. Wild, and M. Reichert.
CCBR-Driven Business Process Evolution. In H. Muñoz-
Avila and F. Ricci, editors, Case-Based Reasoning, Research
and Development, 6th International Conference, on Case-
Based Reasoning, ICCBR 2005, Chicago, IL, USA, August
23-26, 2005, Proceedings, LNAI 3620, pages 610 – 624.
Springer, 2005.

