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Abstract 
 

Collaborative, long-term processes with changing 
requirements occur in several domains. In design and 
manufacturing, we observed the following particular 
characteristics: the process models can be huge and 
contain longsome decisions while the time to market is 
tight. Furthermore, different types of products have to 
be considered. In this paper, we present an  approach 
of new, flexible workflow technology that provides a 
solution for this: The ongoing workflows can be 
adapted by means of late-planning and ad-hoc 
changes. A suspension mechanism allows the workflow 
designers to modify parts of a workflow while the 
remainder of the workflow can continue to be executed. 
A case-based reasoning approach supports the reuse 
of past experience for this. 
 
1. Introduction 
 

Th. Herrmann reports the observation that “many 
collaborative tasks in companies can be partly seen as 
recurrent routines but partly use to contain innovation. 
... This phenomenon will increase with the dynamics of 
the market and its requirements to the flexibility of the 
company and to the individual customer care.” [4, p. 
145, own translation]. Traditional workflow systems 
are able to support the recurrent tasks quite well. In 
order to deal with the flexible, innovative part, the 
workflows have to be adaptable. Even more, in highly 
flexible domains like medicine or chip design 
situations occur where the ongoing workflows need to 
be changed. For instance, an alternative measure has to 
be taken when a certain therapy is not successful for a 
patient or when a certain algorithm does not work for a 

new chip technology. This may happen unexpectedly 
or may require a major adaptation of the ongoing 
process. Both of them can not be handled by traditional 
workflow systems. 

In this paper, we present an approach of new, 
flexible workflow technology that has been driven by 
our URANOS project in cooperation with the chip 
design industry. We focus on issues of the workflows’ 
representation, execution, suspension, and structural 
adaptation of ongoing workflows. A case-based 
reasoning (CBR) approach supports the users in 
reusing past experience with the adaptation of 
workflows for adapting current workflows. 

In the literature, there are already approaches of 
flexible workflow technology that support the 
structural adaptation of ongoing workflows. Late-
planning and hierarchical decomposition [10, 3] are 
one way to modify ongoing workflows. Another way is 
given by ad-hoc changes of the workflow structure [8, 
11]. The ad-hoc changes of workflows have been 
applied successfully for the medical domain, for 
instance. However, we derived some crucial 
requirements from an analysis of the chip design 
domain that are not met by the existing approaches:  
• Huge process models with thousands of tasks 

require that some parts of a workflow continue 
with the execution of tasks while other parts are 
being modified. 

• Decisions may take some time with the 
consequence of delayed workflow modeling 
activities. As above, the workflow should not 
pause completely due to tight time constraints. 

• The coexistence of different product types (i.e. 
chip types in our scenario) requires configurable 
contexts: The context of workflows has to be 



compound individually while sharing the 
vocabulary for this with other workflows. 

• Experience from the adaptation of workflows in 
the past should be reused for the adaptation of an 
ongoing workflow. Unlike the existing 
approaches, we cannot guarantee that we have 
additional information like context information [3, 
10] or conversational knowledge [11] for this. 
Consequently, the retrieval of the past workflows 
should consider the workflows’ structure directly 
rather than solely operating on additional 
information.  

In order to meet these requirements, we have 
developed an approach of new, flexible workflow 
technology that we present as follows: In Section 2, we 
describe the basic, incremental modelling approach for  
workflows. Section 3 deals with the control flow part 
of the workflows, while Section 4 examines the context 
part. Within Section 3, both, the workflow language 
and a tree representation of workflows are designed in 
a way that enables the suspension of workflows. In 
Section 5, we introduce our authoring support 
approach by means of case-based reasoning. In Section 
6, we discuss our approach and draw a conclusion.  
 
2. Handling flexible workflows 
 

Our workflow approach facilitates structural 
changes of the ongoing workflows. This allows an 
incremental modeling approach: Initial workflow 
instances are derived from a set of templates the so-
called workflow definitions. The ongoing workflow 
instances can be modified by ad-hoc changes and by 
late-planning. 
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Figure 1. The workflow definition of a design 

project following SciWay 2.0. 
 

Figure 1 shows an UML activity diagram of a 
sample workflow definition that we modeled for the 
chip design domain as template for new projects. Each 
workflow definition consists of a control flow structure 

of tasks and of a context model. The context model has 
the aim to document factors that have a significant 
impact on the workflows. The target frequency of the 
chip, for instance, is quite important for the design 
process: In case it is missed by a chip component, this 
has an impact on other components that may have to be 
redesigned. Of course, this affects also the control flow 
of the according workflow(s). The control flow 
structure follows the design flow ‘SciWay 2.0’, i.e. a 
standardized description of the step by step design 
process for all digital design projects of our industrial 
partner sci-worx.  
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Figure 2. The workflow definition of a design 

unit following SciWay 2.0. 
 
3. Control flow structure of workflows 
 
The control flow structure is modeled in a well-defined 
workflow language that we describe in the following 
subsection. The execution uses an internal tree-
representation that we present afterwards. For both, the 
modeling and the execution, we have designed special 
elements and mechanisms that prepare them for the 
suspension and adaptation of workflows.  
 
Workflow modeling language 
 

The workflow language that we used is based on the 
notation of workflow patterns introduced by van Aalst 
et al [9]. Our workflow modelling language consists of 
the five basic control flow elements (workflow 
patterns) sequence, AND-split, AND-join, XOR-split, 
and XOR-join as well as of loops. We regard loops as 
structured cycles with one entry point to the loop 
(LOOP-join) and one exit point from the loop (LOOP-
split). A diamond with an '[L', one incoming and 
several outgoing arrows with conditions in squared 
brackets stands for the LOOP-split; a diamond with an 
'L]', several incoming and one outgoing arrows stands 
for the LOOP-join (see Figure 2). For reason of 



adaptability, we have extended this model by three 
own workflow elements: 
• placeholder tasks for sub-workflows are depicted 

as rounded boxes with double borders (see Dummy 
design unit in Figure 1). 

• placeholder tasks for sub-diagrams are marked by 
a fork symbol (see Top-level project execution in 
Figure 1); 

• breakpoints are symbolized by stop signs (see 
Figure 6). 

Sub-diagrams have only been invented for reasons of 
clarity. This hierarchical concept is only introduced in 
order to decompose large workflows into parts which 
can be easier shown in the GUIs. In opposite to sub-
workflows, sub-diagrams do not have an own 
workflow engine nor an own context. Breakpoints are 
necessary for the control of modifications in a 
workflow instance. Setting a breakpoint prevents the 
workflow engine from overrunning tasks that are about 
to be modified. 
 
Tree representation 
 

The control flow elements form building blocks. 
For instance, the sequence of tasks between the LOOP-
join and the LOOP-split in HDL implementation in 
addition in Figure 6 belong to a LOOP-block. Building 
blocks cannot be interleaved but they can be nested. 
For example, in Figure 2, the AND-block is an inner 
block of a sequence which belongs to the outer LOOP-
block. The building block concept allows us to 
represent the workflow instances by means of a tree-
oriented data structure. This structure can be processed 
in a quite straightforward implementation.  

In the tree representation, the nodes represent the 
particular workflow elements (tasks, placeholder tasks, 
control flow elements or breakpoints) by different 
types of nodes. Each type of node encapsulates the 
execution logics of its workflow element, for instance 
the parallel execution of the children of an AND-node. 
We explain this further by means of a short example: 
Assume that we have derived a workflow instance 
called Design unit XY from the workflow definition in 
Figure 2 and, to simplify matters, replaced the sub-
diagrams by plain tasks, e.g. the sub-diagram ASIC 
synthesis by the task ASIC synthesis. Additionally, we 
set a breakpoint between the LOOP-split and the ASIC 
synthesis task. This sample workflow instance is 
represented by the tree in Figure 3 as follows: The root 
node of the tree is labeled by the name of the (sub-) 
workflow (see the legend of Figure 3). Tasks are 
represented by leaves (see 1 to 6 in Figure 3). A 
sequence node (S) contains a set of elements that are 
executed in a serial way from the left to the right. 

Other control flow elements (L for loops, A for AND’s, 
X for XOR’s) have solely sequences as children that 
are processed according to the semantics of the parent 
node. Breakpoints (B) are represented as leave nodes of 
sequence nodes. The sample in Figure 3 contains a 
break point between the loop block and task six. The 
set of node types within the tree structure is easily 
extendible, for instance by a new type of node (O) for 
OR-blocks. 
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Figure 3. The workflow instance of the design 

unit XY. 
 

For execution purposes, every node is enriched with 
engine relevant data such as the state of processing. 
Additionally, the task nodes contain particular task 
data, e.g. the roles of potential executors. The 
execution of the tree is realized with an event concept. 
Whenever the state of a workflow element changes the 
particular node fires an event to the children or parents 
according to its semantics. The receivers decide how to 
handle it, e.g. to propagate it or to fire further events to 
its children or parents. For instance, when the task 2 
(HDL implementation) in Figure 3 is being completed, 
it fires an event to the parent S. This node generates a 
new triggering event and fires it to the AND node. The 
AND node triggers 3 (Preliminary FPGA synthesis) 
and 4 (Preliminary ASIC synthesis) via its children 
sequence nodes. Some events are able to cross the 
borders of workflow instances via the sub-workflow 
placeholder tasks. For example, this is necessary in 
case the error handling of a sub-workflow has failed. 

In order to prepare the workflow instances for ad-
hoc changes, we have invented the new concept of 
master copies for the handling of loops. With this 
concept, we are able to distinguish the past and the 
future parts of the workflow unambiguously. It is a 
crucial prerequisite for ad-hoc changes within a loop-
block. We do not support modifications of particular 
iterations; all changes are valid for every future 
iteration. The master copies are created incrementally; 
each workflow element that has been activated or 



marked as omitted in an inactive branch of an XOR-
block will be copied to the master. Figure 4 shows a 
brief example of a workflow instance that contains a 
loop-block with a sequence of two tasks. 
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Figure 4. A workflow instance with a loop. 
 

At the beginning of the first iteration, the loop node 
L is activated by R. Second, S is started and a copy of 
S is linked to L as first element of the master. S 
controls the serial execution of the two tasks 1 and 2. 
For each task that is activated a copy of the task is 
attached to the corresponding location in the master 
(see step 3 in Figure 4). As soon as all children of the 
sequence are completed, L receives an event that the 
first iteration has been finished. L has to decide 
whether a second iteration will be started. In case it is, 
the sequence S’ is executed, a further master S’’ is 
created, and the above described mechanism is 
repeated. In the other case, L is marked as completed 
and the parent of the loop receives a notification.  
 
4. Configurable workflow contexts 
 

Besides of the control flow structure, a workflow 
has a context model (see Figure 1). Discussions with 
chip designers led us to the decision to develop a 
configurable context model. For each type of product, 
the context model can be tailored to the appropriate set 
of context factors. For instance, security aspects play a 
major role in the automotive area while factors from 
the application context like the number of pixels of a 
camera are more important for consumer products. Our 
analysis of change request documents from the chip 
domain has yielded several interdependencies between 
context factors. For instance, the output pins of a chip 
segment have a direct impact on the input pins of a 
successor chip. We have chosen to organize the context 
in an ontology-based model in order to describe 
interdependencies. 

Figure 5 depicts the top-level ontology for our 
context model. We distinguish two areas for the 
definition and the application of context factors:  
 

 
 

Figure 5: The top-level ontology of the context 
model. 

 
1. FactorCategory, FactorDefinition and all its 

descendant classes (BooleanFD, DateFD, etc.) 
belong to the pool of context factors. The pool 
contains the definitions of the factors including the 
value types and default values.  

2. Project, ProjectUnit and Factor with its 
descendants (BooleanFactor, DateFactor, etc.) are 
for the assignment of factors to project units and 
their unit-specific values.  

 
We use Protégé conform owl as a context exchange 

format. The users are able to exchange either the pool 
of factors only or in combination with the actual 
application of this pool to projects. We have selected 
owl because it extends RDF and XML by expressions 
in description logics (DL) that we use for some 
properties and restrictions of the relations, e.g. for the 
property that hasDefinition is functional and for the 
existence restriction concerning hasDefinition in 
Factor. These two sample expressions mean that 
hasDefinition must be specified for each instance of 
Factor with exactly one instance of FactorDefinition.  

The context model can be configured by means of 
our context acquisition tool. We hide the complexity of 
the owl format from the users. For further information 
on the implementation of the context acquisition tool, 
we refer to the literature [6].  

 
5. Authoring support for the adaptation of 
workflows 
 

The experience that is contained in an ongoing 
workflow instance and the changes applied to it can be 
captured within cases according to the CBR approach. 
The cases are stored within a case base that can be 
queried by the user. A query is a description of the 



current problem situation, i.e. a current workflow 
instance that is to be modified. The result of the 
retrieval is a list of the best matching cases from the 
case base. The past solution from a retrieved case can 
be reused in order to adapt the current workflow. At 
the moment, the user has to transfer the solution for 
adapting the current workflow manually, but in future, 
we will investigate to what degree this can be 
supported automatically by proposing potential 
adaptations.  

A case consists of a pair of subsequent revisions of 
a workflow instance [X, X’]. The previous revision X 
is the problem part of the case; X’ - the revision of the 
workflow instance that has already been modified - is 
the solution part of the case. 
 

 
 
Figure 6. Revision of a sub-workflow instance. 
 

Figure 6 shows a sample revision of a sub-workflow 
instance that has been derived from the workflow 
definition in Figure 2. It has developed from the initial 
workflow instance in two adaptation steps: First, it has  
been extended by the additional task Check whether 
feature set is confirmed. Second, Update 
implementation specification and the sub-diagram with 
the placeholder task HDL implementation in addition 
have been inserted later on. The context model may 
have been changed as well, for instance, by modifying 
the value of a context factor. The two adaptation steps 
of the workflows’ structure and the context model form 
two subsequent revisions X and X’ of the workflow 
instance. They can be stored as a sample case in our 
case base where X is the problem part and X’ the 
solution part of the case.   

In order to determine the best matching cases to a 
query workflow instance, we use a similarity function 
that compares the query pair wise with the particular 
cases of the case base. The resulting similarity values 
induce an order of cases. The best matching cases are 
the retrieval result. The similarity function requires an 
appropriate representation of the cases. Luo et al. [5] 

have developed a building block similarity for 
traditional workflows that would fit quite well to the 
tree representation that we have used for the execution 
of workflows. Unfortunately, this method is not 
suitable for changes of the order of workflow elements 
what is typical for our workflows. Minor changes, for 
instance, moving a task to a different block lead to 
major restructuring activities within the building block 
tree and consequently seems to impact the similarity 
values to a too high degree. Due to this, we have 
developed an alternative representation for retrieval 
purposes (see below). The cases can be transformed 
automatically to this retrieval-specific representation. 

The retrieval-specific representation of a workflow 
instance in a particular revision has two parts: one for 
the control flow structure of tasks and another one for 
the context model. The context is represented by a 
structural CBR approach with attribute-value pairs in a 
straightforward way. The representation of workflows’ 
structure makes use of the fact that the instances are 
derived from a particular workflow definition. As the 
instances usually differ only slightly from their 
templates, they can be described by means of the 
difference to their workflow definition. A workflow 
definition is represented as a set of elements, such as 
tasks and control flow elements, as well as a successor-
predecessor-relation on this set. The difference 
between an ongoing instance and its workflow 
definition covers the following issues: 
1. the structural modifications of tasks and control 

flow elements 
2. the state of processing 

Both can be encoded by sets for added and deleted 
workflow elements with respect to the original 
template. Hereby, completed tasks as well as passed 
control flow elements are regarded as deleted. 

The similarity of the workflows’ structure is 
computed based on graph edit distances [3] that make 
use of the sequences of add and delete operations [7]. 
The similarity of context models is be computed 
according to the local-global-principle of the structural 
CBR approach [1]. Both of the similarity values for 
context and structure are aggregated to an overall 
similarity value. 
 
6. Discussion and conclusion 
 

We have presented an approach of new, flexible 
workflow technology that has been motivated 
empirically by our analysis of the chip design domain 
but is not restricted to this domain. It is applicable for 
further domains with collaborative, long-term 
processes under changing requirements like software 
engineering or flexible manufacturing.  



The state of the Java implementation of our 
approach is the following: the prototypical core of the 
workflow engine has been implemented; the context 
acquisition tool is already under evaluation at our 
industrial partner sci-worx; the further GUI’s and the 
authoring support component are still under 
development. Our prototype will be integrated with the 
CAKE system [3] as an additional component. 

The benefits of our system are the following: The 
system is able to deal with huge process models with 
thousands of tasks as it supports late-planning and ad-
hoc changes of workflows. The adaptations are 
embedded in a sophisticated suspension mechanism 
that supports the users to find a good balance between 
tight deadlines on the one hand and changing 
requirements as well as delayed decisions on the other 
hand. The configurable context model extends the 
workflows’ structure in order to document the 
experience with the development of different product 
types. A case-based retrieval mechanism supports the 
reuse of experience for the adaptation of ongoing 
workflows.  
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