
Introspection into an agile workflow engine for long-term processes
– tool demonstration –

Mirjam Minor, Daniel Schmalen, Jakob Weidlich
Business Information Systems II

University of Trier
54286 Trier, Germany

{minor,schmalen,weid4701}@uni-trier.de

Andreas Koldehoff
Silicon Image GmbH
Garbsener Landstr. 10

30419 Hannover, Germany
andreas.koldehoff@siliconimage.com

Abstract

This demo paper is on an introspection tool for an agile
workflow engine that executes long-term workflows. Agile
workflows are workflows whose control flow structure can
be adapted at run-time. We will present the architecture
of the overall agile workflow management system, briefly
introduce the agile workflow modelling language, and de-
scribe the tool for the introspection into the representation
and execution of the workflows.

1 Introduction

The implementation of a workflow management system
that can execute agile workflows is a challenging task as the
workflows can dynamically evolve while being executed.
The implementation must ensure that the workflow man-
agement system can handle structural adaptations of the on-
going workflows at unforeseen, future points. This includes
that any workflow describes a consistent, executable control
flow still after the modifications, that the already completed
parts of the workflows are recorded correctly, and that the
system is able to deal with several users modifying and ex-
ecuting workflows in parallel. In contrast to agile workflow
technology, variant and exception handling approaches like
opaque tokens in Abstract BPEL [9], pockets of flexibil-
ity [14], worklets [1], and experience-based exception han-
dling [7, 6] allow structural adaptations only at previously
(at build-time) specified points of the control flow. This re-
quires different solutions to the above mentioned problems.
Emergent workflows [3, 2, 8, 5] denote the other extreme
of flexible workflows. These declarative approaches learn
workflows from sets of loosely coupled tasks. Agile work-
flows lie in between those very structural and the declar-
ative approaches on the other hand as they rely on struc-
tured processes but allow the incremental modelling as well

as structural ad-hoc changes. In fact, few agile workflow
management systems (WFMS) have been implemented, for
instance those described in [13, 15, 16, 4]. An introspec-
tion tool that gives insight into the system-internal states
of all ongoing workflows is a valuable aid for both, sys-
tem developers and administrative process-owners. How-
ever, the structural adaptations of the workflows should not
be made with the introspection tool but by means of a sep-
arate, graphical modelling tool. The introspection is for de-
bugging and technical monitoring issues.

This demonstration paper on an introspection tool for the
execution of agile workflows contributes to the development
of the CAKE system (CAKE stands for collaborative, agile
knowledge engine) whose methods have been introduced
in previous work [11, 12]. Roughly spoken, CAKE is for
the management of agile, long-term workflows, i.e. work-
flows that take several weeks or months of time. CAKE
supports late-planning and ad-hoc changes of the ongoing
workflow instances that have been derived from the work-
flow definitions (templates). A suspension mechanism al-
lows the workflow designers to modify parts of a workflow
while the remainder of the workflow can continue to be exe-
cuted. Change reuse is supported by means of a case-based
reasoning approach.

The remainder of this paper is organized as follows: In
Section 2, we describe the role of the introspection tool
within the overall CAKE architecture. Section 3 gives a
brief introduction into the modelling language that is the
basis for our agile workflow technology. In Section 4, we
present the novel introspection concept for agile workflows.
Section 5 concludes the paper with a summary.

2 Overall architecture

The core component of the CAKE system is the agile
WFMS. Its architecture is depicted in Figure 1. The WFMS
consists of three parts: the user interfaces, the workflow en-



actment service with the underlying data access layer, and
the test engine.

Figure 1. Architecture of the WFMS.

The user interfaces are the following:

• The modelling tool provides a graphical user interface
to create and adapt agile workflows.

• The work list shows the tasks that have been assigned
to a particular user and notifies the workflow enact-
ment service when a task has been finished.

• The admin tool is for administrative purposes like
restarting the workflow enactment service.

The workflow enactment service consists of the follow-
ing sub-components:

• The communication broker uses Web technology for
bi-directional message transfer.

• The core of the workflow enactment service consists
of an agile workflow engine and an engine manager.
They control the execution and adaptation of the agile
workflows.

• The persistency management cares for the consistent
and persistent storage of the workflow instances at run-
time.

• The work list handler manages a role model.

• The workflow definition handler provides workflow
templates.

The test engine for the left hand side of the architecture
contains the following sub-components:

• The introspection tool monitors the internal execution
and control flow of the agile workflow engine.

• The JUnit tests are for further testing activities.

The introspection tool as a part of the test engine plays an
important role for the further development of the other sys-
tem components that exist in prototypical implementations
at the moment. The developers may just have a look at the
current structure and execution state of a workflow instance.
Furthermore, they can trigger off the further execution of an
instance by taking over the role of a work list. And they can
even modify the structure of a workflow instance by tak-
ing over the role of a simplified, non-graphical modelling
tool. The introspection tool may benefit the whole proto-
typical operation phase in future. Administrative process-
owners may employ it for technical monitoring purposes,
for instance for solving conflicts that may occur unexpect-
edly due to a crashed work list in a straightforward way. In
this case, the introspection tool is taking over the role of a
simplified admin tool.

3 Modelling language for agile workflows

We have specified a control-flow-oriented workflow
modeling language for agile workflows. The language has
the five basic control flow elements sequence, AND-split,
AND-join, XOR-split, and XOR-join, and also loops. We
regard loops as structured cycles with one entry point to
the loop (the control flow element LOOP-join) and one exit
point from the loop (the control flow element LOOP-split).
A diamond with an ’[L’, one incoming and several outgoing
arrows with conditions in squared brackets stands for the
LOOP-split; a diamond with an ’L]’, several incoming and
one outgoing arrows stand for the LOOP-join.

Figure 2 shows a clipping of a workflow instance from
the chip design domain. It describes the workflow for the
implementation of a chip module in hardware description
language (HDL).

For adaptability reasons, we have created two more con-
trol flow elements: breakpoints and placeholder tasks for
sub-workflows. Breakpoints are necessary for the control
of modifications in a workflow instance concurrently to the
execution. Setting a breakpoint prevents the workflow en-
gine from overrunning tasks that are about to be modified.
Placeholder tasks for sub-workflows stand for a reference
to another workflow instance that is enacted when the con-
trol flow reaches the placeholder. For further details on the
modeling language, we refer to the literature [12].

The agility of the instances is restricted by three con-
straints: The control flow elements form the following
building blocks in the process models: sequence-blocks,
AND-blocks, XOR-blocks and LOOP-blocks. (A) Build-
ing blocks cannot be interleaved but they can be nested. (B)



Figure 2. Sample workflow clipping at user level.

Before a structural adaptation can take place the concerned
area of the workflow instance must be suspended from ex-
ecution by means of a breakpoint. (C) Breakpoints are not
allowed for ’the past’, i.e. in areas of the workflow that have
already completed their execution. A workflow instance is
well-formed if it complies with the constraints (A) to (C).

4 Introspection into workflow representation
and execution

The workflow modeling language facilitates the agility
within workflows. This leads to new requirements for the
workflow execution that can not be met by traditional work-
flow enactment services. The two additional control flow
elements introduced for breakpoints and for sub-workflows
need to be handled. Furthermore, the loop blocks require
a special treatment since an adaptation of an ongoing loop
may lead to different iterations of the same loop. In the
following, the concept of states, a tree structure for the pro-
cessing of the workflows, and the concept of master copies
for the loops are introduced.

The state of processing are stored for all building blocks
and tasks of a workflow instance. The following states are
employed for processing: READY – the default state for
new workflow elements, ACTIVE – currently being ex-
ecuted, COMPLETED – has been executed successfully,
FAILED – has been executed unsuccessfully, SKIPPED
– has been left out manually, OMITTED – lies in an
inactive branch of an XOR, BLOCKED – from a sub-
workflow placeholder whose sub-workflow has been sus-
pended, and SUSPENDED – is within the scope of a break-
point. BLOCKED is a special case of SUSPENDED as the
workflow area behind a blocked placeholder tasks is sus-
pended for execution but not accessible for modifications as
far as the user has not set an additional breakpoint at this
workflow’s level.

The building block concept allows representing the
workflow instances by means of a tree-oriented data struc-
ture. The tree consists of different node types for the tasks,

the four building blocks, the placeholder tasks for sub-
workflows, the milestones, and the breakpoints. The execu-
tion logics of the workflow elements including the states of
processing are annotated to the particular node types. Due
to this encapsulation, the tree concept is scalable in case the
process modeling language is extended, for instance, with
new control flow elements for OR-blocks.

Figure 3 shows a snap-shot of the introspection tool for
the agile workflow engine that gives insight into the inter-
nal representation and execution of the sample workflow in-
stance snippet from Figure 2. The task ”Implementation
specification” is currently ACTIVE and can be set to COM-
PLETED by hand. The right hand side of the figure shows
a clipping of the representation of the workflow instance in
XML (see [10] for a description).

Loops are prepared for agility with the new concept of
master copies. The workflow elements that belong to a
loop-block are copied during their processing. The mas-
ter copies form a new sub-tree that is gradually inserted as
a sibling of the original sub-tree for the loop-block. In the
second and following iterations, the procedure of copying
is repeated and leads to the creation of further sub-trees.
The current master copies are accessible for the setting of
breakpoints and for structural modifications. Modifications
are valid for all future iterations but do not affect the past.
Nested loops can be modified with restrictions only; due to
space limitations, this is not able to be elucidated here in
detail.

Figure 4 depicts a snap-shot from the sample workflow
instance of Figure 3 where the execution has continued and
reached the second iteration of the first loop (”HDL Loop”)
meanwhile. A second and a partial third iteration of the loop
have been inserted into the tree representation. As the task
”HDL coding” is currently active in the second iteration,
the tasks ”HDL code check” and ”Review HDL code” in
the second iteration and the task ”HDL coding” in the third
iteration are master copies.

The agile workflow engine implements an event-based
execution of the control flow. A system-external event like



Figure 3. Completing a task manually at system level.

Figure 4. The internal master copies within an ongoing loop.



the completion of a task on a work list triggers a chain
of system-internal events. Internal events are propagated
through the workflow tree either towards the root or towards
a leaf node. A node of the tree interprets incoming events
in accordance with the node’s execution logics. An ’ACTI-
VATE’ event, for instance, that comes from the father node
of a task node causes an outgoing ’ACTIVATED’ event in
the root direction. Some of the events are parametrized, for
instance, a ’MOVE’ event that is fired when an inner LOOP
has been completed in order to move the sub-tree of master
copies towards the outer loop. The events in a chain belong
to the same act, e.g. to the handling of a new breakpoint.
The chain is expanded incrementally. All member events
of the same chain are partially ordered so that they cannot
overtake each other. The introspection tool is a good means
for the monitoring the effects of such chains of events.

5 Summary

We have demonstrated an introspection tool for an ag-
ile workflow engine that gives insight into the representa-
tion and execution state of a workflow instance at system
level and simulates a simplified functionality of a work list,
a workflow modelling tool, and an admin tool. It allows to
continue the execution by manually completing the execu-
tion of tasks (work list) and to add or delete workflow el-
ements including breakpoints (modelling tool). It allowsto
create, start, and re-start workflow instances (admin tool).
Such an introspection tool provides valuable support for the
development and maturation of novel agile workflow tech-
nology.

6 Acknowledgment

The authors acknowledge the Federal Ministry for Edu-
cation and Science (BMBF) for funding this work under
grant number 01M3075. We acknowledge the assistance
we have received from both Stefan Pipereit, Silicon Image
and Marko Höpken, Silicon Image as well.

References

[1] M. Adams, A. H. M. ter Hofstede, D. Edmond, and W. M. P.
van der Aalst. Worklets: A service-oriented implementation
of dynamic flexibility in workflows. In R. Meersman and
Z. Tari, editors, On the Move to Meaningful Internet Systems
2006: CoopIS, DOA, GADA, and ODBASE, OTM Confeder-
ated International Conferences, CoopIS, DOA, GADA, and
ODBASE 2006, Montpellier, France, October 29 - Novem-
ber 3, 2006. Proceedings, Part I, volume 4275 of Lecture
Notes in Computer Science, pages 291 – 308. Springer,
2006.

[2] S. Carlsen and H. D. Jørgensen. Emergent workflow: the
ais workware demonstrator. In Proceedings of the CSCW-
98 Workshop: Towards Adaptive Workflow Systems, Seattle,
WA, USA, 1998.

[3] P. Dourish, J. Holmes, A. MacLean, P. Marqvardsen, and
A. Zbyslaw. Freeflow: Mediating between representation
and action in workflow systems. In CSCW, pages 190 – 198,
1996.

[4] M. Heller, A. Schleicher, and B. Westfechtel. Process evo-
lution support in the ahead system. In J. L. Pfaltz, M. Nagl,
and B. Böhlen, editors, Applications of Graph Transforma-
tions with Industrial Relevance, Second International Work-
shop, AGTIVE 2003, Charlottesville, VA, USA, September
27 - October 1, 2003, Revised Selected and Invited Papers,
volume 3062 of Lecture Notes in Computer Science, pages
454–460. Springer, 2004.

[5] T. Herrmann. Lernendes workflow. In T. Herrmann, A. W.
Scheer, and H. Weber, editors, Verbesserung von Geschft-
sprozessen mit flexiblen Workflow-Management-Systemen,
pages 143 – 154. Physica-Verlag, Heidelberg, 2001.

[6] S.-Y. Hwang and J. Tang. Consulting past exceptions to fa-
cilitate workflow exception handling. Decision Support Sys-
tems, 37(1):49 – 69, 2004.

[7] Z. Luo, A. P. Sheth, K. Kochut, and I. B. Arpinar. Excep-
tion handling for conflict resolution in cross-organizational
workflows. Distributed and Parallel Databases, 13(3):271
– 306, 2003.

[8] T. D. Meijler, H. Kessels, C. Vuijst, and R. leComte. Re-
alising run-time adaptable workflow by means of reflection
in the baan workflow engine. In Proceedings of the CSCW-
98 Workshop: Towards Adaptive Workflow Systems, Seattle,
WA, USA, 1998.

[9] R. Mietzner, Z. Ma, and F. Leymann. An algorithm for
the validation of executable completions of an abstract bpel
process. In M. Bichler, T. Hess, H. Krcmar, U. Lech-
ner, F. Matthes, A. Picot, B. Speitkamp, and P. Wolf, ed-
itors, Multikonferenz Wirtschaftsinformatik, MKWI 2008,
München, 26.2.2008 - 28.2.2008, Proceedings, pages 437
– 438. GITO-Verlag, Berlin, 2008.

[10] M. Minor, D. Schmalen, and R. Bergmann. Xml-based
representation of agile workflows. In Multikonferenz
Wirtschaftsinformatik 2008 (MKWI 2008), pages 439–440.
GITO-Verlag, 2008.

[11] M. Minor, D. Schmalen, A. Koldehoff, and R. Bergmann.
Structural adaptation of workflows supported by a sus-
pension mechanism stand by case-based reasoning. In
16th IEEE International Workshops on Enabling Technolo-
gies: Infrastructures for Collaborative Enterprises (WET-
ICE 2007), 18-20 June 2007, Paris, France, pages 370–375,
2007.

[12] M. Minor, A. Tartakovski, D. Schmalen, and R. Bergmann.
Agile workflow technology and case-based change reuse for
long-term processes. International Journal on Intelligent In-
formation Technologies, 4(1):80–98, 2008.

[13] M. Reichert and P. Dadam. Adeptflex-supporting dynamic
changes of workflows without losing control. J. Intell. Inf.
Syst., 10(2):93–129, 1998.



[14] S. W. Sadiq, W. Sadiq, and M. E. Orlowska. Pockets of
flexibility in workflow specification. In H. S. Kunii, S. Ja-
jodia, and A. Sølvberg, editors, Conceptual Modeling - ER
2001, 20th International Conference on Conceptual Model-
ing, Yokohama, Japan, November 27-30, 2001, Proceedings,
volume 2224 of Lecture Notes in Computer Science, pages
513 – 526. Springer, 2001.

[15] B. Weber, W. Wild, and R. Breu. Cbrflow: Enabling adaptive
workflow management through conversational case-based
reasoning. In P. Funk and P. A. González-Calero, editors,
Advances in Case-Based Reasoning, 7th European Confer-
ence, ECCBR 2004, Madrid, Spain, August 30 - Septem-
ber 2, 2004, Proceedings, volume 3155 of Lecture Notes in
Computer Science, pages 434–448. Springer, 2004.

[16] M. Weske. Workflow management systems: Formal founda-
tion, conceptual design, implementation aspects. habil the-
sis, 2000. Fachbereich Mathematik und Informatik, Univer-
sität Münster.


