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Abstract: Resource provisioning is an important issue of cloud computing. Most of the recent cloud solutions implement
a simple way with static thresholds to provide resources. Some more sophisticated approaches consider the
cloud provisioning problem a multi-dimensional optimization approach. However, the calculation effort for
solving optimization problems is significant. An intelligent resource provisioning with a reduced calculation
effort requires smart cloud management methods. In this position paper, we propose a case-based reasoning
approach for cloud management. A case records a problem situation in cloud management and its solution.
We introduce a case model and a retrieval method for previously solved problem cases with the aim to reuse
their re-configuration actions for a recent problem situation. The case model uses the container notion corre-
lated with QoS problems. We present a novel, composite similarity function that allows to compare a recent
problem situation with the cases from the past. During retrieval, the similarity function creates a ranking of
the cases according to their relevance to the current problem situation. Further, we describe the prototypical
implementation of the core elements of our case based-reasoning concept. The plausiblility of the retrieval
approach has been tested by means of sample cases with simulated data.

1 INTRODUCTION

The management of resources for services is a
vital aspect of cloud computing (Baun et al., 2011).
For a cloud provider, it is important to fulfill the
requests of their users and to avoid violations of
Service Level Agreements (SLA). On the other hand,
it is desirable to use the available resources as effec-
tively as possible to avoid the waste of energy and
to save hardware costs. It is required to find a good
balance between over-provisioning of resources and
under-provisioning (Armbrust et al., 2010). Cloud
management addresses monitoring and configuration
methods to achieve a good cloud configuration. A
cloud configuration is the placement of the virtual
machines (VM) on their physical machines (PM)
and the services on the VM’s. It also includes the
resource provisioning for the VM’s and their contain-
ers. A container is a run time environment such as
OpenShift Gears or a Docker container. Cloud man-
agement can also be seen as a resource management
problem that can be solved by a multi-dimensional
optimization approach (Garg et al., 2011; Zhao and
Li, 2013), balancing resource provisioning with other
optimization criteria like costs for SLA violations. A
simple example for over-provisioning is two PM’s,

each hosting VM’s and with an overall average
resource utilization of 30%. It could be beneficial
to migrate the VM from one PM to another for the
reason of energy savings by stopping one PM. On the
other hand, under-provisioning of resources such as
memory or bandwidth can lead to SLA violations.
Such violations increase the costs for the provider
and may lead to a decrease of reputation (Shoaib and
Das, 2014).

One method to provide resources is the static
way. In this case, the system does not adjust itself to
a changing situation. There is the risk of under- or
over-provisioning (Shoaib and Das, 2014). Several
approaches solve the provisioning problem in a more
dynamic way. They range from rather simple, rule
based approaches, such as observations on the num-
ber of open connections (Pousty and Miller, 2014),
to complex algorithms. Quiroz et al. (Quiroz et al.,
2009) describe a decentralized, robust online clus-
tering approach for a dynamic set of heterogeneous
applications for resource provisioning. They consider
the typical workload of a cloud infrastructure as
a mix of long running, computationally intensive
jobs, bursty and response-time sensitive web service
requests, and data and IO-intensive analytic tasks.



Case-based Reasoning (CBR) (Aamodt and Plaza,
1994) is an intelligent alternative to the static and
dynamic approaches mentioned above. The core idea
is to retrieve similar situations and their solutions
from the past in order to reuse them for the current
situation. CBR has been considered for intelligent
cloud management recently in the literature (Maurer
et al., 2013). The work of Maurer et al. applies CBR
to implement automatic cloud management following
the MAPE reference model (Monitor - Analyse - Plan
- Execute) (Corporation, 2006), which originates in
autonomic computing. A case in cloud management
records a cloud configuration with current services
and SLA’s to be processed as a problem situation. A
solution describes the optimal distribution of work
on the optimal number and configuration of cloud
resources while maintaining SLA’s. Maurer et al.
use a bag of workloads to schedule the work, which
makes it difficult to predict future workloads and
system behavior.
We think a CBR based approach can solve the pro-
visioning problem in a intelligent way with reduced
calculation effort. We are planning to implement a
system that uses CBR. This position paper focuses
on a core concept for intelligent, case-based cloud
provisioning namely the case-based retrieval of
former cloud configurations. In our future work,
successful cloud configurations from the past shall
be reused for problem situations in current cloud
configurations.
In CBR, the retrieval ”deals with the process of
selecting experience items from the experience
base that are relevant for the current problem to
be solved.”(Bergmann, 2002). In this paper, the
experience items (cases) are containers with their
parent node (the VM that executes the container) and
their related services and SLA’s. The experience base
(case base) contains items with violated SLA’s. At
this point the cases only include configurations with
under-provisioning.

2 SERVICE
CHARACTERIZATION

In this section we introduce the characterization of
services, which is a prerequisite to determine the sim-
ilarity between two cases. Inspired by Quiroz et al.
(Quiroz et al., 2009), we use five attributes to charac-
terize a service. These attributes describe the behavior
of the service as follows.

As the name indicates for a response-time sen-
sitive service, the response time is important. A

service characterization
1 response-time sensitive
2 long running, computationally intensive
3 bursty, computationally intensive
4 data intensive
5 I/O-intensive

Table 1: Overview of service characterization following
Quiroz et al. (Quiroz et al., 2009)

scenario for this characterization could be a task with
a user interaction where a long waiting time is not
feasible.
A long running, computationally intensive service
is CPU and/or memory intensive and has a long
execution time, for example more than 1 hour. In
contrast, a bursty, computationally intensive service
is CPU and/or memory intensive but has a short exe-
cution time. A storage intensive service needs a large
amount of disk space. This could be for example
a service that processes large video files and stores
them. Such a service would be also I/O-intensive.
This means the service has special requirements for
network bandwidth and/or disk read and write speed.

We have chosen this approach for describing a ser-
vice instead of the more common cpu intensive, mem-
ory intensive, network intensive and storage intensive.
The reason is, we think this is a more natural way to
characterize a service and it describes in a better way
what the behavior of a service is. For example the
term ”‘the service is cpu intensive”’ contains less in-
formation about a service than the term”‘the service is
a long running, computationally intensive service”’.
On the one hand, cpu intensive does not provide in-
formation on the execution time. On the other hand,
it could be difficult to determine the exact resource
usage. Thus, a more fuzzy description could be suit-
able.
We are aware of the fact that not all of the service
characterizations are in any case independent from
each other, and we will consider this in our similar-
ity model. However, we believe that the traditional
model can also suffer from similar dependencies. For
example, a CPU intensive job will also be memory in-
tensive and /or storage intensive in terms of read/write
operations. This may be caused by the fact that the
cache is not large enough and the CPU stores inter-
mediate results in the memory or on the disk. This is
clearly a dependency from the CPU intensive aspect
to the memory intensive aspect.

The similarity function might use alternative
service characterizations. We have chosen the above
attributes for a service characterization as a starting
point for our experiments.



We use a binary vector to determine the characteri-
zation of each service. This is the characterization
vector. For example, a web service that automatically
renders large images and stores them has the charac-
terization of long running, computationally intensive,
storage intensive and I/O-intensive. There is no
user-interaction, i.e. the service is not response-time
sensitive. Because of the large image sizes to be
expected it will likely not be bursty, computationally
intensive. The characterization vector for this service
is (0,1,0,1,1) following the order described in Table
1. The values of the characterization vector are
determined automatically for each service. Initially,
we derive default values from the SLA specification
(compare Table 2). After a period of monitoring,
the characterization of the services may be updated
based on observations of the run-time behavior.

Service characterization Related SLA’s
response-time sensitive network latency, bandwidth
long running, computationally in-
tensive

completion time with a long dead-
line

bursty, computationally intensive completion time with a short dead-
line

data intensive data availability
I/O-intensive network bandwidth, disk IO band-

width

Table 2: Overview of service characterizations and their re-
lated SLA’s

Garg et al. (Garg et al., 2011) says that transac-
tional applications such as Web applications require
guaranteed response time and throughput. We think
that related SLA’s can determine the network latency
and network bandwidth because both values have a
strong impact on the response time and the through-
put. If the network latency is too high, the response
time may also be too high. On the other hand, if
the bandwidth is too low the throughput may be af-
fected. The values network latency and bandwidth
can be measured by network monitoring tools.
The other SLA’s are inspired by (Kolodner et al.,
2011; Kundu et al., 2010).

3 CBR CASE STRUCTURE

First of all we want to give a short introduction
into CBR cases before we introduce the separate parts
of our model. Afterward we describe how we define
the similarity between cases.
A case consists of a problem part and a solution part.
The problem part describes a situation that occurred
in the past, for example, a cloud configuration with
violated SLA’s. The solution part contains reconfig-
uration steps (such as start more VM’s, migrate con-
tainers etc.) to solve the problem. If a new situation

with violated SLA’s occurs, the system will search in
the case base to retrieve a case from the past that is
similar to the current situation. We use the similarity
function we will introduce later on in this section to
determine the similarity between two cases. If a sim-
ilar case is found the solution from the past is used as
a starting point for reconfiguration. The problem part
of the case includes a container with its parent node,
the services executed on the node, the SLA’s related to
the services, and the service query. The service query
is the set of services to be started next. They have not
yet been provided with resources.
There are two possible problems that can occur, which
may make it necessary to reconfigure the cloud con-
figuration. The first problem is that there is a con-
tainer which contains one or more violated SLA’s, or
SLA’s that are about to be violated in the near future.
The second problem is that there are service requests
that can not be fulfilled by the node because of it’s
resource utilization. In both cases, a reconfiguration
may be required.
We describe a cloud configuration C as a set of nodes
n ∈ Nodes. A node can be a virtual machine or a stor-
age component. The nodes form the first layer of a
hierarchical structure as depicted in Figure 1. The
second layer comprises the containers and the third
the services.
Each node n∈Nodes includes the provided resources
prnode, the current utilization urnode of each resource
and a set of containers that are executed by this node
n = (prnode,urnode,containers). The provided re-
sources depend on the type of node. The provided
resources of a virtual machine are described by values
for CPU, memory, storage and network bandwidth
prnode = (cpu,mem,sto,bdw). The resources can be
monitored by different tools, such as nagios (Nagios,
). The utilization of the resources is given as the re-
source usage (in percentage) of the containers that are
executed on this node. All containers at the same node
share the resources of this node. Thus, the resource
utilization of the node can be determined from the re-
source utilization of the particular containers.
Similar to nodes, containers are run time environ-
ments for services. They are decribed by the provided
resources prcon, utilized resources urcon, and a set of
services, which use the provided resources and are re-
sponsible of resource utilization in analogy to con-
tainers for nodes. Let c be a container of node n, then
is c = (prcon,urcon,services).
Each service can be considered a workload, consist-
ing of a unique service identifier, the service char-
acterization, the number of users who are currently
working with, and the volume of the input data. An
example of a service is a rendering Web service where



users can upload their images and let them being ren-
dered. The service characterization of such a service
will probably be response-time sensitive due to the
user interaction, and bursty, computationally intensive
respectively long running, computationally intensive
due to the broad diversity of image sizes. Such a ser-
vice could be used by several users at the same time.
The number of the users who currently communicate
with the service can be discovered by the different IP
addresses. The uploaded images are the input data
and the size (in mb) is the volume of the input data.
This can be monitored by network-traffic monitoring
tools.

Figure 1: The hierarchic structure of cloud configuration.

One challenge is to assign the resource usage of a
node to it’s containers and likewise from a container
to it’s services. For example, if the memory utilization
of a node n is 66% and n comprises only one con-
tainer c1 it is easy to determine the share of the mem-
ory utilization consumed by c1. Let us assume that n
provides c1 with all available resources, i.e. prnode =
prcon. In this case the 66% memory utilization comes
all from c1. If n comprises three containers (c1,c2,c3)
the case is more difficult. Even if the resources prnode

of n are distributed in equal parts between the contain-
ers (for each ci, prcon = 1/3prnode) it can not be con-
cluded that the containers have the same workloads
and, thus, are responsible for 22% of the overall uti-
lization. It is possible that one of the containers is
idle while another one has a share of 11% and the last
container is responsible for 55% of the utilization as
illustrated in Figure 2. To estimate the percentage of
utilization consumed by each container /service, we
use task manager tools. At each level of the hierar-
chy (node, container, service), the current share of the
CPU, memory, network and disk I/O usage of the con-
tainers/services can be determined via task manager
tools like top (Unix Top, 2014) which show the indi-
vidual share of the resources for each process. Each
container is visible as a process for a node and each
service for a container.

Figure 2: Example of resources provided and utilized.

In addition to the cloud configuration, our model
of a problem situation considers the service query.
Each time a cloud user considers to start a service
she sends a request to the cloud system to trigger this
service. The service query contains all requests that
have not yet been fulfilled. The requests are described
by the name of the service and the according SLA’s.
A sample service is the rendering Web service Ren-
der Service on Apache2.4. After a request is accom-
plished, the system assigns a unique identifier to the
service and deletes the request from the service query.
The status of the individual SLA’s for ongoing ser-
vices are monitored by the system. The state of a
SLA might be green, yellow or red. Green means the
measured values are acceptable im terms of the SLA.
If the state is yellow the values are still acceptable
but they are close to boarder and a SLA violation in
the near future is to be expected. A red state means
that an SLA violation has occurred. The thresholds
forchangig the state from green to yellow or to red
depend on the SLA, i.e. it is predefined by the admin-
istrator or the user.

4 CASE SIMILARITY

In order to determine the similarity between two
cases, we use a composite similarity function for the
problem part of the cases. We define the similarity
between two nodes by the similarity of their resources
provided, including the utilization of these resources.
The similarity function for nodes nodeprov is induced
from a taxonomy of nodes as depicted in Figure 3.
For our first experiments, we use the resource sets
of Amazon EC2 instances (AWS, ) as leafs of the
taxonomy. An example for an EC2 instance is the



M3 instance with two virtual CPU’s, 3.75 GB RAM
and 32 GB of disk space. For further information
on the instances, we refer to the Amazon Web page
www.aws.amazon.com/de/ec2/instance-types/. We
think that the size of the instances (tiny, small, 4xlarge
and so on) has a higher impact on the similarity than
an eventual specialization of the container (for exam-
ple for memory intensive applications). For the nodes,
we prefer a taxonomical similarity over a numerical
function calculated from the Euclidean distance, for
instance. The reason is that for many nodes the val-
ues between several resources differ to a large extent.
For example, the minimal number of CPU’s is one
and the maximum number is 40. On the other hand,
the minimal bandwidth we expect is 100 Mbits/sec.
The maximum is 10 Gbits/sec. Instead of balancing
the similarity values for the particular resources by
weighting or by normalization, we decided to build a
taxonomy since it provides an easy and natural model.
The similarity of the resource utilization nodeutil is

Figure 3: Taxonomy of nodes (in parts).

calculated by the Euclidean distance nodeutil(p,q) =√
n
∑

i=1
(qnode

i − pnode
i )2 where p is the vector of n uti-

lization values for the first case and q for the second
case. The utilization values are provided in percent-
age. For example, qnode

1 = 50 is the utilization of the
CPU qnode

1 with a value of 50%. p2 is the utilization
of the memory and so on.
Analog to nodes, we specify the similarity function
between containers consim by means of a taxonomy
of the provided resources and the Euclidean distance
for the utilized resources conuti. We use RedHat
OpenShift Gears and IBM Bluemix containers as tem-
plates for our containers. Thus, the similarity function

for containers is consim(p,q) =
√

n
∑

i=1
(qcon

i − pcon
i )2

with con for container.

In addition, we consider the services and the SLA’s
related to the container. As pointed out earlier, every
service has a vector of it’s characterizations (see Sec-
tion 2). To compare two nodes it is not necessary to
compare the services themselves but to compare the
occurrence of a characterization attribute, i.e. whether
a service is response-time sensitive or not. Therefore,
we build the container characterization conchar. This
is a vector of aggregated occurrences of each service
characterization attribute for each service that is exe-
cuted on the container. For example: a container c has
two services s1,s2. Both services are response-time
sensitive. In addition, s2 is also bursty, computation-
ally intensive. The container characterization vector
CV for c is then CV = (2,0,1,0,0). We use again the
Euclidean distance for the container characterization
vectors.
To determine the similarity of the number of SLA vi-
olations slavio we build again a vector that contains
every SLA type occurring in our cloud configuration
and sum up the number of SLA’s with condition red
for the specific container. For example, there might
be two different types of SLA’s specified in our cloud
configuration namely network latency and data avail-
ability. Again, we consider container c with two ser-
vices s1,s2. Both services contain an SLA on network
latency and data availability. In this example, both
SLA’s are violated for s1. Due to different thresh-
olds, only the network latency SLA for s2 is in red
state. Thus, the resulting SLA violation vector for c
is c = (2,1). Again, we use the Euclidean distance
to measure the similarity between two SLA violation
vectors.
Finally, we compare the service query sq for both
cases. At the moment, we compare only the length
of two queries to determine the similarity. In future
work, we will extend this.
Now we can calculate the entire similarity osim for
two cases by aggregating the local similarity values
in a weighted sum:
osim= x1∗nodesim+x2∗nodeuti+x3∗consim+x4∗
conuti+ x5conchar+ x6 ∗ slavio+ x7 ∗ sq.
The weights x1,x2...,x7 are configurable.

5 EVALUATION

In a preliminary evaluation, we have implemented
a prototype to generate 50 test samples and measured
the similarity between them. As mentioned before,
we have used Amazon EC2 instances as a template for
our nodes and OpenShift Gears and Bluemix contain-
ers as a template for our containers. We used about
100 automatically generated services with a random



set of service characterizations. The nodes for the
cases have been chosen randomly with random sets
of containers and random sets of services. Depend-
ing on the service characterizations, we determined
randomly a utilization value for each resource (CPU,
memory...). For example, if a service is long run-
ning, computationally intensive, the average CPU and
memory utilization will be higher than for a service
without this characterization. The utilization is also
higher for a container with multiple characterizations
of the same type. For example, if a container contains
two services with the long running, computationally
intensive characterization the entire utilization value
will be higher than for a single one. After having ini-
tialized the utilization for each container, we calcu-
lated the resource utilization for the node. Further, a
set of SLA’s is assigned to the containers, depending
on the services executed on the container. If an SLA
can not be fulfilled due to the resource utilization of
the container, the SLA is set to status red. The case
base has been created by chosing randomly one con-
tainer per node.
We applied the similarity function described in Sec-
tion 4. The results in Figure 4 indicate that the size of
the nodes (for example Case 4 is an i2.xlarge node) is
an important aspect since nodes with a similar size are
frequently more similar to each other than two nodes
with other sizes. The result shows also that the dis-
tance of a case to itself is always zero, i.e. that the
cases are equal.

Figure 4: Example result of our experiments.

6 CONCLUSION

In this paper, we have presented our concept for
the retrieval part of a case-based approach for intel-
ligent cloud provisioning. We have introduced our
similarity function for cases and have conducted sev-
eral test evaluations. The evaluation with sample test
cases has shown that it is possible to retrieve plausible
results. There are several open issues we will tackle in
future. We have only considered under-provisioning
so far. However, we will develop a CBR approach for
preventing over-provisioning as well. Second, we will
consider whether it is sufficient to observe only single
containers with their nodes. Another open issue is to
determine the characterization for services based on
their run-time behavior. The preliminary results are

promising and provide a first, important step towards
intelligent, case-based cloud provisioning.
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