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Abstract. Energy management systems are a typical example for inert
systems where an event or action causes an effect with a delay. Tradi-
tional solutions for energy management, such as PID controllers (PID =
proportional-integral-derivative loops), control target values efficiently
but are sub-optimal in terms of energy consumption. The paper presents
a novel, case-based reasoning approach for inert energy management sys-
tems that aims to reduce energy wastage in over heating and over cooling
for buildings. We develop a case representation based on time series data,
taking environmental impact factors into consideration, such as weather
forecast data. This includes a post-mortem assessment function that bal-
ances energy consumption with comfort for the users. We briefly discuss
retrieval and reuse issues. We report on an experimental evaluation of the
approach based on a building simulation, including 35 years of historical
weather data.

Keywords: Case-based reasoning, reasoning over time, energy manage-
ment

1 Introduction

A system can change its state by the influence of an impact factor. In physics or
in biology, we necessarily have a time delay between impact and state change.
Inert Systems are systems where an event or action takes effect with a delay and
over a period of time. The system may either abruptly switch from one discrete
state to another after a delay time or cumulate the impact factor and change
the state continuously. In the following, we will focus on a case-based approach
for the latter. An example of an inert system in nature is the human body where
the injection of a drug changes the insulin level for a couple of hours. A technical
sample is an energy management system (EMS) for buildings. The movement
of a weather front has an impact on the room temperature with a time lag. We
have chosen energy management for buildings as a sample application area for
controlling inert systems.

Traditionally, Control System Engineering (CSE) [8] is used for this class of
problems. It is well understood and widely used in EMSs and other domains.



PID controllers (proportional-integral-derivative loops) and switching rules are
the industry standard for the control of building EMSs [6]. This logic responds
to setpoints and schedules for building components, such as heating circuits,
radiators, or air handling units. That means that the temporal delays between
causes and effects that are characteristic for inert systems are only considered
in a reactive manner by the controller. The temporal dependencies are hidden
in setpoints and schedules. For instance, the time for pre-heating to change a
heating circuit into an ’enabled’ mode is expressed by higher setpoints in the
early morning schedule. The basic control logic largely ignores forward planning
based on weather forecasts, expected occupancy, or renewable energy availability.

More advanced, model-based decision systems aim to optimize the system
operation based on modeling, feedback, and forecasts [6]. They use an explicit
time model and forward planning in order to optimize the energy consumption
at a system level. However, solving an optimization problem has two challenges
[6] in comparison to the basic control logic, such as PIDs: It requires analytical
building models at design time and, second, it is computationally intensive, i.e.
it requires powerful computational units. A novel EMS is desirable with a lower
energy consumption than a PID controller but that is easy to deliver, and easy
to operate.

As an alternative solution to costly optimization, Case-based reasoning (CBR)
provides methods for experience reuse. In this paper, we propose a CBR ap-
proach for energy management in buildings where experience in operating the
EMS is to be reused. The traditional PID controllers of the EMS are replaced
by a case-based control unit for the energy supply. Since EMSs for buildings are
inert systems, the cases need to be equipped with a concept of time. The core
idea is to observe and record the inert behavior of a system by time series of
impact factors and state variables. The context description for a case comprises
further time series, such as measured values of the building, recent metereologi-
cal data and weather forecasts. Corrective actions that have led to good results
in similar situations in the past are reused to manipulate the system state in the
next time step, i.e. to achieve a system state that is close to the setpoint values.
For instance, if a setpoint in an EMS specifies a desired room temperature a
corrective action is an amount of energy to be supplied to or dissipated from
the room. Like a PID controller that provides a corrective action as an output
of each control cycle in order to maintain a desired setpoint value, our CBR
approach provides a corrective action as an output of each reasoning cycle.

In comparison to the optimization approaches, the case-based approach uses
a shallower model. The analytical model is built on similarity functions for cases.
We claim that the CBR approach outperforms the basic control approach for
building EMSs in terms of energy consumption while providing the same comfort
for the occupants.

The remainder of the paper is organized as follows. Related work is discussed
in Section 2. The case representation is introduced in Section 3. A similarity
function is presented in Section 4. An adaptation rule is specified in Section 5.



Section 6 addresses the experimental setup while the results are reported in
Section 7. Finally, a conclusion is drawn in Section 9.

2 Related work

CBR has been used for energy prediction in the recent literature [9, 11]. Like our
approach, the work uses a notion of time series. The case-based energy prediciton
approaches forecast the energy consumption based on energy values from cases
with time series data that is similar to the recent situation. The prediction task
is different but quite related to the control task that we address in our work.
Like in prediciton, we reuse cases with similar time series. In contrast to reusing
energy values, we reuse the control actions that have an impact to the inert
system and observe the resulting energy consumption.

Temporal context plays a major role in many CBR approaches [10, 5]. Recent
work on CBR on time series data is reported in Gundersen’s survey [2] as well
as in the series of RATIC workshops [4, 3]. This work was a major source of
inspiration for our case representation and recent similarity function.

3 Case representation for inert systems

The CBR approach aims at reusing experiences in improving the settings for
the inert system. A case records the experience in corrective actions to keep a
target value within assigned limits around a setpoint value, for instance the room
temperature within a corridor of 19.5 to 20.5 degree celsius.The case Case =
(P, S,A) comprises a problem description P , a solution description S and a
quality assessment A of the proposed solution.

P – The problem description records the state of the system and its environ-
ment, including the recent settings.

S – The solution description addresses a revision of the settings by corrective
actions.

A – The quality assessment contains the results of a post-mortem analysis of
the suggested solution.

Time series for setpoint values, measured process values, and disturbance val-
ues are recorded for the problem description P . Setpoint values describe the
desired state of the inert system. Measured process values are the actual values
that might deviate from the setpoint values. Disturbance values are values that
have an impact on the measured process variables in addition to the corrective
actions. From the point of view of the controller system, they ”disturb” the con-
trol processes. From the point of view of the users, they are key determinants on
the inert system. The values for the time series are recorded at equidistant time
points t−m, ..., t−2, t−1, t0 with t0 denoting the current time point at reasoning
time. The continuation of some of them might be predicted for the equidistant
time points t1, t2, ..., tn, estimated at time point t0. An example for the latter is
wheather forecasting data.



The solution S records corrective actions that are taken to keep the measured
process values within a corridor of values around the setpoint values. For the sake
of simplicity, we have chosen that the solution is a single corrective action for
the setting of the inert system in the next time step initially. We assume that
the time interval until the next time point is large enough to measure a first
impact of the corrective action. Alternatively, the solution can be described as
time series of corrective actions over a number of time steps. Even interleaved
phases of retrieve and reuse are possible in principle. However, the latter would
lead to concurrent processes which are difficult to handle.

Table 1 illustrates a sample case in an EMS. The distance between time
points is one hour. Disturbance values are the solar radiation in minutes per
hour (Sun) and the temperature outside the building (Toutside). The measured
process values are the measured room temperature (Tinside). The setpoint values
are the desired room temperature (Ttarget). The corrective action is the energy
(Ein) supplied or dissipated via the EMS during the next time step t1. The case
has been recorded at time point t0. The disturbance values have been measured
until t0. The values for t1 until tn are forecast data.

The assessment A is taken when the time frame is over. When time point
tn has passed, the updated values for t1, ..., tn are used to assess the case. The
predicted disturbance values have been replaced by the measured disturbance
values. The time series for the measured process values and the corrective actions
have been continued. The assessment considers the deviation between setpoint
and measured process values by an error function e as well as the corrective
actions by an energy consumption function u for t1, ..., tn. It is computed by the
assessment function f for a case c by a weighted sum as follows:

f(c) =
n∑

i=1

w1 · e(i) + w2 · u(i)

The error function e measures the deviation of the actual room temperature
Tinside from the setpoint value Ttarget:

e(i) = |Tinside(i)− Ttarget(i)|

The energy consumption function u measures the heating or cooling energy of
the corrective action. Since the production of cooling energy consumes nearly
twice the energy of heating [7] , we multiply cooling energy with the factor 2:

u(i) =
{
Ein(i), Ein(i) ≥ 0
Ein(i) · 2, Ein(i) < 0

The weights w1 and w2 specify the balance between reaching the target temper-
ature and saving energy.

4 Case retrieval

A time event triggers a reasoning cycle starting with the retrieve phase. We have
chosen hourly time events. The query describes the current situation of the EMS,



Time point Time stamp Sun Toutside Tinside Ttarget Ein

[yyyymmddhh] [min
h

] [◦C] [◦C] [◦C] [Wh]

t−m−2 1981083016 60 20.3 19.94 20 -3500

t−m−1 1981083017 42 20.1 20.06 20 -750

t−m 1981083018 0 18.8 21.43 20 0

... 1981083019 0 16.9 21.12 20 0

1981083020 0 15.4 20.63 20 0

1981083021 0 13.8 20.02 20 1000

1981083022 0 13.2 20.07 20 1000

1981083023 0 11.1 20.04 20 1250

1981083100 0 10.4 19.96 20 1500

1981083101 0 10.1 20.00 20 1500

1981083102 0 9.1 20.00 20 1750

... 1981083103 0 8.0 20.08 20 1750

t−2 1981083104 0 8.1 20.02 20 1750

t−1 1981083105 0 8.3 19.98 20 0

t0 1981083106 48 9.1 18.62 20 0

t1 1981083107 60 11.5 – 20 ?

... 1981083108 60 14.0 – 20 –

1981083109 60 16.0 – 20 –

1981083110 60 17.8 – 20 –

1981083111 60 19.1 – 20 –

1981083112 54 20.0 – 20 –

1981083113 42 20.3 – 20 –

1981083114 60 20.9 – 20 –

1981083115 42 21.4 – 20 –

1981083116 0 21.2 – 20 –

... 1981083117 0 21.0 – 20 –

tn 1981083118 0 19.7 – 20 –

tn+1 1981083119 0 18.2 – 20 –

tn+2 1981083120 0 17.1 – 20 –
Table 1. The problem description of a sample case.



including the setpoint values, measured process values, and disturbance values.
The case depicted in Table 1 can serve as a sample query. The retrieval uses a
composite similarity measure for a query and a case that aggregates the local
similarity measures by a function F :

sim = F (simTime stamp,

+ simSun,

+ simT outside,

+ simT inside,

+ simT target)

F is a weighted sum. simTime stamp considers the annual date date and the
time of day hour when the query and the case were recorded each:

simTime stamp(query, case) =
1

1 + |datequery(t0)− datecase(t0)| · |hourquery(t0)− hourcase(t0)|

We assume the values of the time series Sun, Toutside, Tinside, and Ttarget as
vectors. The local similarity measures for the time series are computed by means
of the City Block Metric [1]. The size of the vectors Sun, Toutside, and Ttarget is
m+ n+ 1 and m+ 1 for Tinside, since Tinside data only exists for the past.

As a starting point, we have chosen straight forward similarity measures. We
will investigate further, more sophisticated similarity measures for time series,
such as dynamic time warping [10], as a part of our future work.

5 Case reuse

The solution of the best matching case is reused for the current situation. The
solution describes the corrective action for the settings of the system by the
amount of energy Ein case(t1) to be infused into the building next. However,
Ein case has to be adapted to the recent situation. The impact of an energy infu-
sion depends not only on the bare amount of energy supplied or distracted but
also on the current room temperature and on the heat capacity of the building.
The latter can be specified by a constant cbuilding.

The amount of energy is adapted as follows:

ead = Ein case(t1) + cbuilding · (Tinside case(t0)− Tinside query(t0))

The difference between the room temperature of the reference case and the
current temperature in the building is multiplied with cbuilding. In case the cur-
rent room temperature is lower, more energy is required for heating than in the
case (or the energy that is required for cooling can be reduced, i.e. the nega-
tive value of Ein case increases). In case the current room temperature is higher



than in the case, Ein case decreases analogously. The adaptation could lead to
amounts of energy that are not available for heating and cooling in our building.
Thus, we introduce the limits Emin for cooling and Emax for heating. The final
amount of energy to be infused is determined by the following clipping function:

Ead(t1) =

Emin, ead < Emin

ead, Emin < ead < Emax

Emax, else

In future work, the approach might be extended to reuse a sequence of cor-
rective actions Ein case(t1)...Ein case(tk).

6 Experimental setup

We have implemented the case-based approach for inert systems and conducted
an experimental evaluation with an EMS scenario. The results of the CBR sys-
tem have been compared to a traditional PID controller with respect to energy
consumption and comfort for the occupants.

Ideally, the experiments would be executed in a real building measuring the
energy consumption by sensors at the valves and measuring the comfort by
acquiring feedback from the real occupants. Since these resources are difficult to
obtain, the experiments have been conducted in silico. They involve an energy
simulation of a building to approximate the impact of both, the energy infusion
by the system as a corrective action and the two metereological parameters sun
duration and outside temperature as disturbance variables. A seeding case base
has been constructed from real weather data for the time period from 1981 to
2014. The experiments on the behavior of the CBR system were then simulated
with the weather data for the year 2015.

In our example we use a grid of one hour for all of our calculations. On the
one hand this reflects the inertness of a building. On the other hand this decision
is taken to limit the computational complexity.

The energy model of the building assumes a single cubic room with an edge
length of 10m that has one side with glass windows. The relative position of
sun is not taken into account. Basically, the temperature of the air in a building
depends on the energy flow into and out of the building through walls and
windows. The loss or gain of the energy ∆E through walls and windows can
be calculated by using the thermal transmittance (also known as U-value or
k-value):

∆E = U ·∆T ·A ·∆t
U characterizes the isolation value of the wall or the window. ∆T is the temper-
ature difference between Toutside and Tinside. A is the surface that divides inside
and outside and ∆t is the time span.

The dynamic simulation is done by the iteration:

Et+1 = Et +
n∑

i=1

∆En



where ∆En represents the different sources and drains of energy. So far we use
∆E1 for the energy flow through walls,∆E2 for the energy flow through windows,
∆E3 for the energy of the sun through the windows and ∆E4 for the energy of
the heating and cooling system.

As the base for the dynamic simulation of the building we use historical
weather data of Frankfurt a.M./Germany ranging back to 1981 in an one hour
resolution containing air temperature, air speed and direction, humidity and
minutes of sun per hour. It is important to note that the initial case base is built
for that climate and applies only to regions within the same climate classification.

In a post-mortem analysis, we created a case for each hour of the historical
weather data as t0. The setpoint values are fixed to 20.0◦C. We calculated op-
timal energy values to be infused into the building for four hours, i.e. tn = t4
regarding the development of the weather and the (simulated) state of the build-
ing. In a brute-force approach, we explored the full solution space with energy
amounts between Emin = −4kWh and Emax = 4kWh in a grid of granularity
g = 0.1kWh. The assessment function f (compare Section 3) serves as fitness
function to optimize the Ein values. For our example we weighted the energy
consumption function with zero (w2 = 0) to force the system to generate seeding
cases that keep the given temperature as good as possible. The complexity of
generating an optimum initial case follows O((Emax−Emin

g )n).

Instead of using the simple approach for creating a seeding case base as
described above, a wide variety of modifications for a real building is possible and
desirable. Changing demands on the target temperature regarding the comfort
of the inhabitants of the building are one example. Another opportunity for
an extension is to use sliding frames of acceptable min/max temperatures to
preserve a maximum of energy.

We designed two variants of an experiment to evaluate our system. The
first experiment tests the ability of our system to compete with a common PID
controller if it has access to future weather data. The CBR system uses the
future weather data to find the best matching case. The similarity of two cases
is calculated with a time span of ±12 hours where we assume the existence of
a high-quality weather prediction for the next 12 hours. The second experiment
explores the behavior of our system if no future weather data is available. It acts
on the same seeding case base as the first experiment, but the best matching
case must be retrieved without knowledge of the future weather development.
The similarity of two cases is based on the data for the previous 24 hours.

We compared our results against a hand optimized PID controller. To keep
the computational effort low, this PID controller works as all of our calculations
in the one hour grid that we use for the CBR system. On the one hand this
decision is debatable, since a real PID controller works in a grid of seconds or
minutes and can thus adapt much faster to changes of the impact factors. On
the other hand, the delay between demand and delivery of hot and cold water
(or air) in a real building lies between 15 minutes an 30 minutes. Arguably, our
one hour computation grid is not as precise as a real system but it acts similarly.



The PID controller uses the difference between inside and outside temperature
as the base for its calculations.

7 Experimental results

For both experiments, we measured the comfort and the entire energy consump-
tion for the year 2015, comparing the PID controller and CBR system. The
comfort is measured by the Root Mean Square Error (RMSE) of the deviations
from the desired room temperature of 20◦C within the simulated building. Sec-
ond, we measured the entire energy consumption for the year 2015 at large.

Fig. 1. Comparison of CBR (bright red) and PID (dark blue) with the objective to
maintain exactly 20◦C. Future weather data is available.

For our first experiment, that considers future weather data, an interesting
example is the situation for the 12th of June 2015 as depicted in Figure 1. The
outside temperature increases until the early afternoon where the sun seems
to be hidden by clouds. During the sunny period, the PID controller results
in a room temperature that is slightly higher than 20.5◦C which is the upper
boundary of the comfort corridor. The CBR system maintains the 20◦C nearly
perfectly. The RMSE of the deviation for the whole year 2015 of the tempera-
ture inside the building is 0.035◦K for our CBR system and 0.32◦K for the PID
controller. A more palpable metric is the added up deviation of the tempera-
ture:

∑2015123123
2015010100 |20.0◦C−T | which amounts to 178◦K for the CBR system and

1595◦K for the PID controller for the entire year.



The energy infusion values depicted in the sample in Figure 1 seem very sim-
ilar for both, the CBR system and the PID controller. The cumulative annual
values confirm this observation. The CBR system used 13.4MWh of energy for
heating and cooling of the building. The PID used 13.7MWh of energy. This
surprising coincidence can be explained simply by the fact that the PID con-
troller infuses too much energy (overprovisioning) about as frequently as too
little energy (underprovisioning).

Fig. 2. Comparison of CBR (bright red) and PID (dark blue) with the objective to
maintain exactly 20◦C. Future weather data is not available.

The second experiment without considering future weather data leads as
expected to slightly worse (but still reasonable) results for the CBR system.
Obviously, the values for the PID controller remain the same as in the first
experiment. The results for the same sample day as above is depicted in Figure
2. It can be seen that both curves for room temperature and energy infusion
by the CBR system are less smooth than in the first experiment. The annual
RMSE for the CBR system amounts to 0.26◦K. The added up deviation for the
cbr system is 1505◦K. This value is still slightly better than the 1595◦K for the
PID controller for the entire year. The CBR system used 13.8MWh of energy for
heating and cooling of the building. This is slightly worse than the 13.7MWh of
the PID.
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9 Discussion and conclusion

We have introduced a novel CBR approach for the experience-based control of
inert systems and demonstrated the feasibility of the approach in the field of
energy management.

We have presented a case representation with time series of impact factors
and state descriptors, including setpoint values, measured process values, dis-
turbance values and corrective actions. A straightforward similarity measure
has been specified. An adaptation rule considering physical properties such as
the heat capacity of a building has been proposed. Our experimental results for
a simulated building under real weather conditions provide a proof of concept
for using CBR for building EMSs. The experimental results are quite promising
in comparison to a traditional PID controller. The first experiment compares the
CBR system with a common PID controller if CBR has access to future weather
data. The second experiment compares the systems if there is no such access.
The first experiment has clearly shown that CBR outperforms the traditional
PID in terms of both, energy consumption and comfort. The second experiment
has shown that CBR is competitive to traditional PID by comparable values for
energy consumption and by better comfort values.

In contrast to PID, CBR provides a wide range of opportunities for fur-
ther improvements. In addition to weather forecasts, further aspects of forward
planning might be considered, such as expected occupancy, or renewable energy
availability. This would allow us to extend the quality function to cost aspects
and, hopefully, to save both, energy and money.

The next step of our future work will be to create an experimental setup in-
vitro. Thus, we are planning to confirm the simulation results from the in-silico
experiments by measured values to gain further experiences with the system, for
instance on the optimal length of time intervals.

Further intriguing research questions are whether the cases can be trans-
ferred to other buildings, or whether the approach can be tranferred to other
application scenarios for inert systems, such as in medicine. We believe that
CBR is capable of providing significant benefits for the control of inert systems,
especially in reducing modelling efforts and energy consumption.
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