
A CBR MAC/FAC Approach for Cloud Management

Eric Kübler, Miriam Herold and Mirjam Minor
Goethe University, Frankfurt am Main 60325, Germany

Keywords: BPMN, CBR, Cloud Management.

Abstract: In modern working world, efficiency is important. This includes the execution of workflows. Cloud comput-
ing offers is costumers, pay as you go pricing models which can be used to improve the cost efficiency of
workflows execution. To benefit form this pricing model, a smart cloud management concept to assign tasks
to cloud resources is required. Simple solutions struggle with over-, and under-provisioning problems or lack
the needed flexibility. In this paper we present our CBR approach with MAC/FAC similarity function and
experiments for task placements in cloud computing. Therefore we implemented a prototype and compared
the results with the results of human experts.

1 INTRODUCTION

In todays working world, efficiency is a key element
for success. Cloud computing offers nearly infinite re-
sources on-demand on a pay as you go pricing model
(Mell and Grance, 2011). Cloud computing can help
to improve the cost efficiency of a company by reduc-
ing their applications’ demand for buying and hosting
hardware. However, a smart approach for cloud man-
agement is necessary to handle the cloud resource ef-
fective. Further, the working processes can be opti-
mized to save resources. A way to achieve this goal
is the use of workflows that organize the processes.
A workflow is defined by the Workflow Management
Coalition (Workflow Management Coalition, 1999) as
”the automation of a business process, in whole or
part, during which documents, information or tasks
are passed from one participant to another for ac-
tion, according to a set of procedural rules”. A task,
also called activity is defined as follows: ”A process
[...] consists of one or more activities, each com-
prising a logical, self-contained unit of work within
the process. An activity represents work, which will
be performed by a combination of resource (specified
by participant assignment) and/or computer applica-
tions (specified by application assignment)” (Work-
flow Management Coalition, 1999, p. 14). The com-
bination of cost efficiency and process efficiency is a
logical step that has led to a new business model. This
model is known under different names: Workflow as
a Service (WFaaS) (Cushing et al., 2012), Business
Process as a Service (BPaaS) (Accorsi, 2011) or Busi-

ness Integration as a Service (BIaS) (Chang et al.,
2012). The basic idea that is common for the three
models is to execute workflows in a cloud. The execu-
tion of a workflow in a cloud means that the cloud pro-
vides the workflow with resources and software that
are required to complete the tasks of the workflow.
While BIaS targets on integrating existing cloud ser-
vices, WFaaS and BPaaS take a workflow as a start-
ing point. BPaaS puts a slightly stronger focus on
integrating human work than WFaaS. Gartner define
BPaaS as ”the delivery of business process outsourc-
ing (BPO) services that are sourced from the cloud
and constructed for multitenancy. Services are often
automated, and where human process actors are re-
quired, there is no overtly dedicated labor pool per
client. The pricing models are consumption-based
or subscription-based commercial terms. As a cloud
service, the BPaaS model is accessed via Internet-
based technologies.” (Gartner, 2019). An example for
BPaaS is the provision of employee surveys includ-
ing virtual machines with an installed opinion polling
and analytics software with human actors who design
a survey. An example for WFaaS is the deployment
of a web server with a certain web service that ren-
ders images for a scenario such as automatical sum-
marisation of video surveillance data. Each task has
specific requirements that need to be fulfilled. For
instance, a task that renders images has a high de-
mand for CPU power, but less for disk storage and
requires a web services that renders images. In this
work, a cloud node denotes a set of (virtual) hard-
ware and software. The assignment of a task to a

120
Kübler, E., Herold, M. and Minor, M.
A CBR MAC/FAC Approach for Cloud Management.
DOI: 10.5220/0008165001200129
In Proceedings of the 11th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management (IC3K 2019), pages 120-129
ISBN: 978-989-758-382-7
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

fitting cloud node is called a task placement. It is
not efficient, to start a new cloud node for each new
task. On the other hand, the optimization of a task
placement can be reduced to the bin packing prob-
lem if the tasks should be assigned to a finite set of
cloud nodes. Consequently, a smart approach is re-
quired to decide whether and when a new node is re-
quired or whether a task can be assigned to an exist-
ing node. It is challenging to find a feasible solution
that avoids over- and under-provisioning and matches
all requirements. In addition, time restrictions might
occur for tasks that have a time-out timer or where
humans are involved who become frustrated if they
have to wait for too long. It is therefore essential that
the approach is fast, which disqualifies long running
optimization algorithms. In this paper, we investigate
whether Case-based Reasoning (CBR) provides a fea-
sible solution for the task placement problem. The
idea of CBR is that similar problems have similar so-
lutions (Aamodt and Plaza, 1994). The approach of
using CBR for workflow execution in a cloud is not
new. One of the earliest works in this field is from
Maurer et al. (Maurer et al., 2013). They apply CBR
to implement automatic cloud management. Aamodt
and Plaza describe a case as follows: ”In CBR ter-
minology, a case usually denotes a problem situation.
A previously experienced situation, which has been
captured and learned in a way that it can be reused in
the solving of future problems” (Aamodt and Plaza,
1994). A problem situation in our approach is a task
placement with over- or under-provisioning problems,
missing requirements, or unused resources. A case
comprises a task placement with problems, such as
violated Service Level Agreements (SLAs), missing
web services or unused resources. A case also com-
prise a solution that contains another task placement
that solves the problems from the previous task place-
ment. A sample solution is a newly started VM with
the missing web service, the shutdown of the unused
resources or the increasing of the resources to avoid
future SLA violations. We introduce a MAC/FAC ap-
proach for case retrieval. MAC/FAC is a synonym for
”many are called, few are chosen”. The basic idea of
MAC/FAC (Forbus et al., 1995) is to collect in a first
(fast) step promising candidates and determine their
exact similarity values in a second step. The advan-
tage of this approach is that the number of cases for
which the similarity function has to be calculated can
be reduced. In a workshop paper (Kübler and Minor,
2019), we discussed which problems can occur and
propose a MAC/FAC similarity function. In this work
we empirically investigate the feasibility the similar-
ity function for task placements. Now we have imple-
mented the MAC/FAC function, different workflows

from the music mastering domain, executed some in-
stances of the workflows and added (based on the real
measured values) some artificially created cases to the
case base. We report on experiments with two hu-
man experts who ranked the usefulness of the solu-
tions. We compare the results with our MAC/FAC
similarity approach and discuss the benefits of the
MAC and the FAC component. The CBR approach
will be embedded into our Workflow Cloud Frame-
work (WFCF) which was recently implemented and
tested with an rule based approach (Kübler and Mi-
nor, 2018). WFCF is a connector based integration
framework to integration workflow management tools
with cloud computing.

2 RELATED WORK

A wide-spread approach to compute the similarity be-
tween two graphs is to determine the edit-distance
(Cushing et al., 2012; Minor et al., 2007). As shown
in section 3 our case is an attributed forest (or could be
a tree, if we add an underlying hardware-root-node)
with labeled nodes, and therefore the edit-distance
could be a possible solution. However, as shown
in (Zeng et al., 2009), the determination of an edit-
distance for graphs is NP-complete. Another way is
to determine the similarity of complex cases as de-
scribed in (Lopez De Mantaras et al., 2005). The
problem of structural similarity is the high compu-
tational effort. Instead of indexing vocabularies as
suggested by the authors, we use the MAC/FAC ap-
proach (Forbus et al., 1995). This should be a more
flexible approach, where the main factor for similar-
ity are the executed tasks and the problems in the
case. An MAC/FAC approach for workflows was in-
troduced in (Bergmann and Stromer, 2013). Further,
as stated in (Armbrust et al., 2010), a good balance be-
tween over- and under-provisioning of resources is a
challenging issue that is an important aspect for cloud
computing in general (Baun et al., 2011). The sim-
plest methods provide resources in a static way. Such
systems do not adjust themselves to a new situation
causing under- or over-provisioning (Shoaib and Das,
2014). There are several other works in the literature
that addresses the problem of resource provisioning
in the cloud with different approaches (Shoaib and
Das, 2014; Pousty and Miller, 2014; Quiroz et al.,
2009; Bala and Chana, 2011; Rodriguez and Buyya,
2017). However, these approaches have the problem
that the provisioning is either very static, does not
make use of the capabilities of a cloud, or that the ap-
proaches are not implemented yet and therefore rather
theoretically. Other approaches aim at a deeper inte-

A CBR MAC/FAC Approach for Cloud Management

121

gration of clouds and workflows (Wang et al., 2014;
Korambath et al., 2014). They deeply integrate work-
flow and cloud technology, reducing the occurrence of
over-provisioning and under-provisioning. However,
they strongly depend on the used cloud and workflow
management tools. Therefore, they are very limited
in their options to exchange either the used cloud or
workflow management tool or both. This leads tho a
high risk of vendor lock-in, that should be avoided.

3 SIMILARITY OF TASK
PLACEMENTS

In this section we describe the structure of our cases,
the MAC/FAC method and the similarity function for
our cases.

3.1 Case Representation

As mentioned before, a task placement is the assign-
ment of the currently active tasks to cloud resources.
Fig. 1 gives an example. In this example, the tasks
Task2 and Task3 are active, where Task1 is already
done. Task3 is assigned to a container named CON2
where Task2 is assigned to a VM named V M2 and
Task4 is assigend to CON3. Assigned means that
CON2, CON3 and V M2 host the software that the
tasks needs to execute, for example a web service or
an Office Suite. The task calls the web service, or the
user uses a remote desktop connection to work with
the Office Suite.

Figure 1: A simple illustration of a task placement with a
task assigned to a VM and another to a VM.

3.2 Relevance of Case Parts for
Retrieval

Next, we discuss what should be important for the
similarity of two task placements. A task placement
has plenty of parameters that could be considered for
the similarity. In this work, we consider a cloud node
either as a virtual machine (VM), or a container. Both
have a set of resources, this can include, but is not
limited to, CPU, GPU, memory, disc storage, net-
work capacity and different kinds of installed soft-
ware. For comparison, even two cloud nodes with
the same set of resources (same CPU, installed soft-
ware etc.) could considered as different, if the re-
source utilization is different. For example, a cloud
node with 4GB of memory and a utilization of 100%
of the memory, should be more similar to a node with
4GB memory and 90% utilization than a node with
4GB memory and a utilization of 10%. Though, a
VM and a container share some attributes, it makes
a difference if a node is a VM or a container. For
example, a container can be migrated relatively easy
from one VM to another, even if the VMs are hosted
on different cloud providers. This is not so easy and
sometimes even impossible for an entire VM. So the
solution for a VM can not be always the migration to
an other host, this is possible for a container. In this
case, it is necessary to propagate the new URL or IP
address to the workflow. Therefore, to compare two
cloud nodes, it is important to distinguish whether it
is a VM or container, to know the set of resources and
the utilization of the hardware resources. The driv-
ing force of the task placements are the tasks. With-
out any task, there is generally no need for any cloud
node. To determine the cloud resources required for
a task, we introduced in one of our previous works
the concept of task characteristics in cloud computing
(Kübler and Minor, 2016). In short, the idea is to label
tasks with its needs and give a hint of the foreseeable
resource usage. In our current work, we extend the
idea of characteristics so that for example the charac-
teristic ”compute intensive” now has a value of 0 to 4
to indicate how intensive the task uses the CPU and
not just a binary value of 0 or 1 to determine whether
the task is compute intensive or not. Other character-
istics that determine if a task is long or short running,
were replaced by a values that contain the minimal,
maximal and average execution time. Another impor-
tant aspect should be the problems that a placement
has. As mentioned before, this could be for example
violations of Service Level Agreements (SLA) or the
violation of internal constraints for example that there
should be no cloud node active that is not in use.

KMIS 2019 - 11th International Conference on Knowledge Management and Information Systems

122

3.3 MAC/FAC Approach

It is clear that this can lead to many parameters to
compare for similarity. And at this point we even
haven’t discussed the similarity of sets of tasks and
sets of cloud nodes. For performance reason, we
use the MAC/FAC Principle as introduced in (Forbus
et al., 1995), to distribute the effort. The idea is to col-
lect fast a set of few promising case candidates (MAC
step) and investigate the similarity of the candidates
in more detail in a second step (FAC step). As men-
tioned before, the most important aspect for similarity
are the tasks. Therefor in the MAC step we compare
the currently active tasks of the problem case with the
currently active tasks in cases stored in the case base.
The currently active tasks is represented by a set of
vectors. Since tasks are Vectors (which include the
values for the task characteristics, the name and so
on), the hamming distance or the euclidean distance
can be used to determine similarity. But in this case,
we have to consider the similarity between two sets
of vectors. There are some metrics for defining the
similarity between two sets, for example the Haus-
dorff metric (Huttenlocher et al., 1993) or the sum of
minimum distances (Eiter and Mannila, 1997). The
problem with these heuristics is, that it is very easy
to create a case where the similarity is very high but
the sets are by intuition very dissimilar. For exam-
ple in one set are only equal tasks. This could be for
example a set with only a single type of image render-
ing tasks and the other set contains different tasks but
one rendering task and a mapping did map all render-
ing task of the first tasks to the single rendering tasks
of the second set, then the similarity would be 1 for
these two sets. of course, this is not desired. Another
option is not to use a metric for building a single map-
ping, but to build all possible mappings for the vectors
and chose the mapping with the minimum weight like
the Kuhn-Munkers algorithm (Kuhn, 1955; Munkres,
1957). Though, this method is very compute intensive
as mentioned in (Agrawal et al., 1993).

Our solution for a fast approach that is not that
much vulnerable for special cases, uses an intersec-
tion of the task sets to determine the similarity. Let
T1 and T2 be a Set of Tasks, then is the function

simT (T1,T2) =
|T1∩T2|
|T1∪T2|

. The benefit of this func-

tion is, that it covers the difference between the size
of the sets, as well as the actually equal tasks. This
will help in the FAC step to find more relevant task
placements in a reasonable amount of time. Be-
side the tasks, it is important to consider the prob-
lems that a task placement has. As mentioned be-
fore, this could be SLA or constraint violations. The

SLAs and constraints are stored in a a vector, are
ordered by name and contains the number of viola-
tions for each SLA or constraint. We call this an
SLA vector or Problem Vector. To compare two SLA
vectors, we first make sure that both vectors have
the same parameters, which means the same SLAs
and constraints. Let slav1 an SLA vector with the
sla slav1 = SLA11,SlA21 and slav2 = SlA22,SLA32
with the values SLA11 = 1,SLA21 = 3,SLA22 =
2,SLA32 = 1. In a first step we add in both SLA vec-
tors the missing parameters but set their value to 0.
The new vectors are slav′1 = SLA1,SlA2,SLA3′ and
slav′2 = SLA1′,SlA2,SLA3 with SLA11 = 1,SLA1′2 =
0,SLA21 = 3,SLA12 = 2,SLA32 = 1,SLA3′1 = 0.
Now we can compute the euclidean distance between
two SLA vectors. Let qi ∈ SLA1 and pi ∈ SLA2,
than is the euclidean distance for the SLA vectors

dsla(p,q) =
√

1
n

n
∑

i=1
(qi− pi)2. The similarity function

is now simsla(slav1,slav2) =
1

1+dsla(slav1,slav2)
. The

MAC step is a combination of the similarity of the
current active tasks, and the problems, therefore we
chose an aggregated similarity function simmac =
sim(T P1,T P2)T=(T1,T2)+simsla(slav1,slav2)

2 , where T P1 and
T P2 are task placements with T1,slav1 ∈ T P1 and
T2,slav2 ∈ T P2. Depending on the test results, we
may add some weights to the components of the sim-
ilarity function, but for now we consider the tasks and
the problems as equally important.

After a fast determination of promising candi-
dates, the FAC step compares the candidates with the
current problem situation in more detail. Here is the
placement of the tasks, the resources of the cloud
nodes and their utilization important, as well as the
question, which tasks are to be executed next.

3.4 Similarity of Tasks in Placements

As shown before in Fig. 1, a task placement can be
seen as a tree, if all VMs and containers that are not
related to a VM, are assigned to an abstract ”hard-
ware” node, as shown in Fig. 2. This tree is unordered
and labeled, where the labels are the resources that a
cloud node contains. Graph isomorphism is NP com-
plete as well known, but to compute the edit distance
between two unordered labeled trees is also NP com-
plete, as shown in (Zhang, 1996).

The problem is not easier, if we alter the tree and
add new nodes with null values for the labels, to get a
more generalized structure as shown in 3.

Instead we compare the vector of tasks and their
related cloud nodes. We call this a task cloud vector.
Such a vector contains a task, a container and a VM.
As mentioned earlier, it is important not to compare

A CBR MAC/FAC Approach for Cloud Management

123

Figure 2: Task placement as tree with hardware as the root
and the tasks as leafs.

Figure 3: Task placement as tree with the hardware as root
and abstract nodes for a more generalized model.

containers with VMs.
A task within the task cloud vector is represented

by a sub-vector of parameters with their values, the
characteristics and a set of tasks that could be ex-
ecuted next. The idea of this set is to consider
the next tasks for a foresight of the workload that
coming next. Therefore we use once again the eu-
clidean distance to determine the similarity between
the two characteristic vectors and the similarity for
intersection for the next tasks. Let TASK1,TASK2
are set of tasks and t1, t2 are vectors of charac-
teristics with t1 ∈ TASK1, t2 ∈ TASK2. The eu-
clidean distance is then defined as dtasks(t1, t2) =√

1
n

n
∑

i=1
(t2i− t1i)2. Let tn1 ∈ TASK1, tn2 ∈ TASK1

the set with the next task. The similarity func-

tion is now simntask(T1,T2) =
1

1+dtask(t1,t2)
+ |tn1∩tn2|
|tn1∪tn2| .

As shown below, we need a distance function for a
special algorithm. Therefore we build the distance
function with dntask(TASK1,TASK2) = |TASK1 ∪
TASK2|− |TASK1∩TASK2|.

A cloud node contains its hardware resources, the
utilization of the hardware resources and additional
software or information, which are stored as a set of
tags. Let cn = (r,u, tag) describe a cloud node, r is
a vector of hardware resources (for example 4 cpu
cores, 16GB Memory ect), u is a vector of resource
utilization in percentage and tag is a set of tags (for
example tag = windows8, tomcat7, jre7). For the dis-
tance between the resources, we use once again the
euclidean distance dr(r1,r2), as well as for the uti-
lization du(u1,u2). The similarity functions is then
again simr(r1,r2) = 1

1+dr(r1,r2) and simu(u1,u2) =
1

1+du(u1,u2) . To determine the similarity of the set of
tags we build the intersection and compare it with the
merged sets: simtags(tag1, tag2) = |tag1∩tag2|

|tag1∪tag2| . Similar
to the next task we need a distance function for the
tags: dtags(tag1, tag2) = |tag1∪ tag2|−|tag1∩ tag2|.

Figure 4: Task placement as paths.

The overall distance function for two
task cloud vectors is dtcv(tcv1, tcv2) =
d(tags1, tags2) + du(u1,u2) + dr(r1,r2) +
dntask(t1, t2). Similar to the MAC step we might add
weights in the future.

3.5 Similarity of Entire Task
Placements

After defining the similarity for two
task cloud vectors, the next step is do define the sim-
ilarity between two sets of vectors. For this we have
chosen the Kuhn-Munkers algorithm (also called
Hungarian algorithm) as described in (Kuhn, 1955;
Munkres, 1957). This algorithm builds a minimum
weight mapping for bipartite graphs, our in this case
between two sets of vectors, where the edge weight
is the distance between two task cloud vectors. In
a first step a distance matrix must be built, that

KMIS 2019 - 11th International Conference on Knowledge Management and Information Systems

124

contains the distance from each task cloud vector in
the first set to each task cloud vector in the second
set. The Kuhn-Munkers algorithm requires a square
matrix. If the two sets have a different number of
vectors, we add to the smaller set dummy vectors
and set their edge weight to infinite. Because of
the strict selection in the MAC step, based on the
intersection of the tasks, there should be not many
dummy vectors in our matrix. After building the
matrix, the Kuhn-Munkers algorithm successively
improves the mapping between both sets. To deter-
mine the similarity between two sets of vectors, after
Kuhn-Munkers has finished, we build the sum of
the edges between the sets is build. Since this is a
distance function, the similarity function for Kuhn-
Munkers is simkm(tcv1, tcv2) = 1− 1

1+dkm(tcv1,tcv2) In
(Agrawal et al., 1993) is mentioned, that the run time
of Kuhn-Munkers is O(n4) where n is the number
of task cloud vectors, but that the run time can be
improved to O(n3). This is very compute intensive, in
particular this has to be computed for each candidate,
selected during the MAC step, therefor the selection
of the MAC step should be very strict.

4 EVALUATION

In this section, we discuss the evaluation of our simi-
larity function. The experimental setup is as follows:
A case base with real, measured cases is extended by
artificial cases. Two human experts are employed in a
leave-one-out study to create a golden standard of re-
trieval results. An ablation study compares the results
of both, the FAC step only and the full MAC/FAC
retrieval, with the case ranking from the golden stan-
dard. To achieve the experimental data, we have im-
plemented seven workflows from the music master-
ing domain in jBPM citejBPM. Figure 5 depicts one
of the implemented workflows. The first three tasks
’init parameters’, ’generate random set’, and ’choose
file’ are automated tasks, which don’t need web ser-
vices for their functionality, followed by a sequence
of automated tasks that are executed by web services,
and a final task that writes the resulting music data
automatically to a file.

The further six workflows have at least one task
that requires a web service. The Channels Only
workflow, for example, uses the channels web ser-
vice, the Limiter Only workflow uses the limiter web
service. To create a set of cases for our case base we
executed each workflow with real music data in a real
cloud environment and recorded the workflow at an
arbitrary state of execution where no SLA violation
was observed. These snapshots serve as the solution

Figure 5: Workflow from the music mastering domain.

part of a case each. We extended our case base with
artificial cases. Some of them are just variations of
the measured cases with different resource utilization
values or slight changes of the execution environment.
Further cases have been created manually, to include
artificial cases that do not have any similar solutions.
Each case includes one to three active tasks that re-
quire a web service. In the artificial cases, every task
was randomly assigned to either a container or a VM.
For the real measured cases, we used the cloud plat-
form OpenShift (OpenShift, 2019) as an execution en-
vironment. In those cases, the tasks were assigned
to containers only. The overall case base comprises
of 30 cases. The problem part of the cases was ar-
tificially produced from the solution part with some
rules. In a first step we infused some problems to
the cases, such as CPU / Memory over-provisioning
/ under-provisioning, Storage under-provisioning or a
Missing web service. After the problem parts were
configured, the solution placement was copied and
manually adapted to create the problem part. If the
problem was a missing web service, the cloud node
for the according task was deleted. If the problem
was a provisioning problem, the node was either al-
tered to a different cloud node (container or vm) with
a different set of hardware resources (either higher or
lower as before depending whether the problem was
an over- or under-provisioning problem), or the hard-
ware set was just altered for the cloud node. For our
experiments, two human experts selected randomly
14 of the 30 cases as queries (the problem case), and
ranked the other 29 cases (solution cases) into three
categories for each query.The categories were:

Very Helpful. The solution of the solution case can
be applied to the problem case without any
changes.

Partial Helpful. The solution of the solution case
can be applied to the problem case with some ad-
justments (for example: starting a different web

A CBR MAC/FAC Approach for Cloud Management

125

service, or increasing / decreasing resources with
a different amount).

Not Helpful. The solution of the solution case can
not be applied to the problem case at all (because
of different problems).

We investigated how our MAC/FAC approach per-
formed in comparison to the human experts. In addi-
tion, we investigated the results for only applying the
MAC step, or the FAC step alternatively. The aim was
to get insights whether the MAC or the FAC step can
run on its own to achieve similar results or whether
the combination of MAC/FAC is a more feasible so-
lution. For this experiment, we consider all cases with
a similarity value of 90% or higher as very useful.
For partial helpful cases we have chosen the two high-
est similarity values (rounded) lower than 90%. This
can include several cases if some cases have achieved
the same similarity values(after rounding). All other
cases are considered as not helpful. Table 1 shows the
results for very helpful cases.

Table 1: Results for very helpful cases for the MAC/FAC
approach in comparison to the human experts.

Case
Num-
ber

Human MAC/
FAC

MAC
only

FAC
only

case1 3 3 3 3
case2 none none none none
case4 26 26 19, 24,

26
26

case5 10, 16 10, 16 10, 16 10, 16
case6 15 15 15, 17,

22, 25
15

case10 5, 16 5, 16 5, 16,
23

5, 16

case16 5, 10 5, 10 5, 10,
23

5, 10

case18 none none none none
case20 none none none none
case22 none none none none
case25 none none none none
case27 none none none none
case28 none none none none
case30 none none none none

As one can see, if there was a perfectly fitting so-
lution for the human experts, the algorithm always
suggests the same cases. However, the MAC step
only approach found some false positive very help-
ful cases. The MAC step only considers the tasks and
the problems of the case. However, for case 4, 6, 10
and 16, the assigned nodes were different, i.e. the so-
lutions from the solution cases 4, 6, 10 and 16 are
not applicable without any changes and therefore not

very helpful, only partial helpful. For the partial help-
ful cases the picture is quite different, as depicted in
Table 2.

Table 2: Results for partial helpful cases for the MAC/FAC
approach in comparison to the human experts.

Case Num-
ber

Human MAC/FAC MAC only FAC only

case1 4 5 9 10 11
16 17 18 21
26

8 12 8 12 4 5 6 9 10
11 14 15 16
17 18 19 21
22 23 25 26
28 29

case2 11 5 8 9 10 11 12
16 21 23 29

2 13 5 9 10 16
21 29

case4 1 3 5 6 9 10
11 14 15 16
17 18 21

11 19 7 11 27 30 1 3 5 6 9 10
15 16 18 19
21

case5 1 3 4 6 9 11
14 15 17 18
21 23 26

12 23 2 10 12 13
20

1 3 4 6 9 15
18 21 23 26

case6 1 2 3 4 5 9
10 11 14 16
17 18 21 25
26 27 30

8 14 8 14 27 30 1 3 4 5 9 10
14 16 17 18
21 22 26

case10 1 3 4 9 11
14 15 17 18
20 21 26

2 12 13 20 23 2 12 13 20 1 3 4 6 9 15
18 21 23 26

case16 1 3 4 6 9
11 14 15
171821 23
26

12 23 2 12 13 20 1 3 4 6 9 15
18 21 23 26

case18 1 3 4 5 6 9
10 11 14 15
16 17 21 28
29

11 12 29 7 11 12 14
20 29

14 29

case20 7 14 5 7 10 11 13
14 16 18 23
28 29

2 5 10 12
16 18 23 28

18 28

case22 6 8 12 19
23 28 30

817 8 14 27 30 6 15 17

case25 27 6 8 14 15 17
22

8 14 27 30 1 3 4 5 6 9
10 14 15 16
17 18 19 21
22 26 28

case27 25 4 6 7 8 11 14
15 19 22 24
25 26

4 6 15 17
19 22 24 25
26 30

6 8 13 15
25 30

case28 12 14 18 19
23 30

11 12 14 18
20 29

7 11 12 14
20 29

1 3 4 5 6 9
10 14 15 16
18 19 20 21
25 26 29

case30 19 23 28 78 11 14 19 4 6 7 14 15
17 19 22 24
25 26

1 2 3 4 5 6 7
9 10 14 15
16 17 18 19
20 21 22 24
25 26 28 29

If the case does not provide a perfect solution, the
results of the human experts and the algorithms are
different. Table 3 shows the cases, that have the hu-
man experts and the algorithms in common. In all
cases, the human experts have a different set of par-
tial helpful cases than the algorithms. The MAC/FAC
algorithm has in many cases fewer suggestions for
partial helpful cases then the other algorithms. The
most suggestions has the FAC step. As Table 4
shows, the ratio of correct suggestions to the overall
number of suggestions is for the FAC only step the
best. The worst is achieved by the MAC only step.
The MAC/FAC approach performs slightly better than
MAC only. It seems that the MAC step is the weak
spot in this similarity function. The goal of the MAC
step is to collect a set of promising candidates for the

KMIS 2019 - 11th International Conference on Knowledge Management and Information Systems

126

FAC step, but in its current form it filters too many
feasible cases.

Table 3: The partial helpful cases of the algorithms in ac-
cordance with the human experts.

Case Number MAC/FAC MAC only FAC only

case1 none none 4, 5, 9, 10, 11,
16, 17, 18, 21,
26

case2 11 none none
case4 11 11 1, 3, 5, 6, 9,

10, 15, 16, 18,
21

case5 23 none 1, 3, 4, 6, 9,
15, 18, 21, 23,
26

case6 14 14 1, 3, 4, 5, 9,
10, 14, 16, 17,
18, 21, 26

case10 20 20 1, 3, 4, 6, 9,
15, 18, 21, 23

case16 23 none 1, 3, 4, 6, 9,
15, 18, 21, 26

case18 11, 29 11, 14, 29 14, 29
case20 7 none none
case22 8 8 6
case25 14 14 14
case27 25 25 25
case28 12, 14, 18 12, 14 14, 18, 19
case30 19 19 19, 28

Table 4: Percentages of correct suggestions of cases for the
algorithm.

MAC/FAC MAC only FAC only

Cases in com-
mon

16 12 60

False positive
suggestions

70 73 149

Percentage
of correct
suggestions

22,9% 16,4% 40,3%

To get an impression of the execution time of the
particular algorithms, we created in addition to our
initial case base (with 1-3 instances per case) some
new case bases with 30 cases each. Each case con-
sists of 10, 50 or 100 active tasks. Table 5 depicts
the average execution time (in ms) that was taken to
compute the similarity for two cases.

Table 5: Average execution time (in ms) to compute the
similarity for two cases.

Number
of tasks
in case

MAC/FAC MAC
only

FAC only

1-3 tasks 0,04 less then
0.01

0,04

10 tasks 0,14 0,04 0,3
50 tasks 4,2 2,2 7,78
100 tasks 22,8 0,46 44,96

The results show clearly that the MAC step is very
fast, even for a larger set of tasks. The FAC step seems
with only 45ms for 100 tasks also relatively fast. But
this is only the time to compare two cases. If the case-
base contains 1000 cases, and for each case the FAC

similarity has to be computed sequentially, the entire
computation time sums up to around 45sec. Obvi-
ously, it depends on the number of instances per case
and the number of cases in the case base. Splitting
the similarity determination seems a good idea. How-
ever, to do so the MAC step should deliver a more
promising set of candidates than it currently does.

5 CONCLUSION

In this paper we presented the evaluation of our
MAC/FAC approach for the task placement problem
in cloud computing. The results of the experiments
show that the approach performs well if there is a
very similar case to be retrieved. However, if there
does not exist an obvious candidate in the case base
the results differ from the suggestions of the human
experts1. The MAC step in particular needs some ad-
justments to perform better. It seems that the focus
on tasks and problems is not sufficient to find feasi-
ble candidates, the structure of complex cases is more
important than expected. The FAC step on the other
hand performs much better, but the execution time
is as high as expected. Since the similarity for each
case is independent from the other cases, this prob-
lem can be parallelised very well to improve the ex-
ecution time. Still, the performance of the FAC step
should be improved too. In future, we will adjust the
weights of the similarity function. In particular, the
part of the resource utilization should be valued less
in comparison to the other parts. The next step will be
to investigate if we can improve the results by chang-
ing the structure of the cases in such a way that not the
entire placement but only the Task Cloud Vector with
the problem is included. This would reduce the com-
plexity and therefore improve the execution time and
probably the result. On the other hand, if a case only
contains a part of the placement, migration actions
would be much more complicated. One idea to solve
this problem is a dynamic case structure that depends
on the degree of complexity of the problem descrip-
tion. Short representations of the Task Cloud Vector
model only would be sufficient for simple problem
cases while a long representation covering the entire
task placement is required for rather complex cases.
The results of this work highlight the feasibility of
CBR for cloud management and contributes a novel
use case scenario for MAC/FAC approaches.

1Special thanks to our human experts Bahram Salimi
and Jan Höcher.

A CBR MAC/FAC Approach for Cloud Management

127

REFERENCES

Aamodt, A. and Plaza, E. (1994). Case-based reasoning:
Foundational issues, methodological variations, and
system approaches. AI communications, 7(1):39–59.

Accorsi, R. (2011). Business process as a service: Chances
for remote auditing. In 2011 IEEE 35th Annual Com-
puter Software and Applications Conference Work-
shops, pages 398–403. IEEE.

Agrawal, R., Faloutsos, C., and Swami, A. (1993). Efficient
similarity search in sequence databases. In Interna-
tional conference on foundations of data organization
and algorithms, pages 69–84. Springer.

Armbrust, M., Fox, A., Griffith, R., Joseph, A. D., Katz,
R., Konwinski, A., Lee, G., Patterson, D., Rabkin, A.,
Stoica, I., and Zaharia, M. (2010). A view of cloud
computing. Commun. ACM, 53(4):50–58.

Bala, A. and Chana, I. (2011). A survey of various work-
flow scheduling algorithms in cloud environment. In
2nd National Conference on Information and Commu-
nication Technology (NCICT), pages 26–30. sn.

Baun, C., Kunze, M., Nimis, J., and Tai, S. (2011).
Cloud Computing - Web-Based Dynamic IT Services.
Springer.

Bergmann, R. and Stromer, A. (2013). MAC/FAC retrieval
of semantic workflows. In Proceedings of the Twenty-
Sixth International International Florida Artificial In-
telligence Research Society Conference, page 6.

Chang, V., Walters, R. J., and Wills, G. (2012). Business in-
tegration as a service. International Journal of Cloud
Applications and Computing (IJCAC, 2(1):16–40.

Cushing, R., Belloum, A. S., Korkhov, V., Vasyunin, D.,
Bubak, M., and Leguy, C. (2012). Workflow as a
service: An approach to workflow farming. In Pro-
ceedings of the 3rd International Workshop on Emerg-
ing Computational Methods for the Life Sciences,
ECMLS ’12, pages 23–31. ACM. event-place: Delft,
The Netherlands.

Eiter, T. and Mannila, H. (1997). Distance measures for
point sets and their computation. Acta Informatica,
34(2):109–133.

Forbus, K. D., Gentner, D., and Law, K. (1995). MAC/FAC:
A model of similarity-based retrieval. Cognitive Sci-
ence, 19(2):141–205.

Gartner (2019). Gartner definition for business pro-
cess as a service. https://www.gartner.com/it-
glossary/business-process-as-a-service-bpaas/, 2019-
04-20.

Huttenlocher, D. P., Klanderman, G. A., and Rucklidge,
W. J. (1993). Comparing images using the hausdorff
distance. IEEE Transactions on pattern analysis and
machine intelligence, 15(9):850–863.

Kübler, E. and Minor, M. (2016). Towards a case-based rea-
soning approach for cloud provisioning. In CLOSER
2016 - Proceedings of the 6th International Con-
ference on Cloud Computing and Services Science,
Rome, Italy 23-25 April, 2016, volume 2, pages 290–
295. SciTePress.

Kübler, E. and Minor, M. (2018). An intelligent cloud man-
agement approach for the workflow-cloud framework

WFCF. In Proceddings of 13th International Confer-
ence of Software Technologies ICSOFT 2018, pages
841–847.

Kübler, E. and Minor, M. (2019). Experience management
for task placements in a cloud. Accepted for publica-
tion.

Korambath, P., Wang, J., Kumar, A., Hochstein, L., Schott,
B., Graybill, R., Baldea, M., and Davis, J. (2014). De-
ploying kepler workflows as services on a cloud in-
frastructure for smart manufacturing. Procedia Com-
puter Science, 29:2254–2259.

Kuhn, H. W. (1955). The hungarian method for the as-
signment problem. Naval research logistics quarterly,
2(1-2):83–97.

Lopez De Mantaras, R., Mcsherry, D., Bridge, D., Leake,
D., Smyth, B., Craw, S., Faltings, B., Maher, M. L.,
Cox, M. T., Forbus, K., Keane, M., Aamodt, A., and
Watson, I. (2005). Retrieval, reuse, revision and re-
tention in case-based reasoning. The Knowledge En-
gineering Review, 20(3):215.

Maurer, M., Brandic, I., and Sakellariou, R. (2013). Adap-
tive resource configuration for cloud infrastructure
management. Future Generation Computer Systems,
29(2):472–487.

Mell, P. and Grance, T. (2011). The NIST definition of
cloud computing. Computer Security Division, Infor-
mation Technology Laboratory, National Institute of
Standards and Technology Gaithersburg, page 7.

Minor, M., Tartakovski, A., and Bergmann, R. (2007). Rep-
resentation and structure-based similarity assessment
for agile workflows. In Weber, R. O. and Richter,
M. M., editors, Case-Based Reasoning Research and
Development, volume 4626, pages 224–238. Springer
Berlin Heidelberg.

Munkres, J. (1957). Algorithms for the assignment and
transportation problems. Journal of the society for in-
dustrial and applied mathematics, 5(1):32–38.

OpenShift (2019). Openshift. https://www.openshift.com,
2019-04-20.

Pousty, S. and Miller, K. (2014). Getting Started with Open-
Shift. ”O’Reilly Media, Inc.”.

Quiroz, A., Kim, H., Parashar, M., Gnanasambandam, N.,
and Sharma, N. (2009). Towards autonomic workload
provisioning for enterprise grids and clouds. In Grid
Computing, 2009 10th IEEE/ACM International Con-
ference on, pages 50–57. IEEE.

Rodriguez, M. A. and Buyya, R. (2017). A taxonomy
and survey on scheduling algorithms for scientific
workflows in IaaS cloud computing environments:
Workflow scheduling algorithms for clouds. Con-
currency and Computation: Practice and Experience,
29(8):e4041.

Shoaib, Y. and Das, O. (2014). Performance-oriented
cloud provisioning: Taxonomy and survey. CoRR,
abs/1411.5077.

Wang, J., Korambath, P., Altintas, I., Davis, J., and Crawl,
D. (2014). Workflow as a service in the cloud: Ar-
chitecture and scheduling algorithms. Procedia Com-
puter Science, 29:546–556.

KMIS 2019 - 11th International Conference on Knowledge Management and Information Systems

128

Workflow Management Coalition (1999). Workflow man-
agement coalition glossary & terminology. last access
011-23-2018.

Zeng, Z., Tung, A. K. H., Wang, J., Feng, J., and Zhou,
L. (2009). Comparing stars: on approximating graph
edit distance. Proceedings of the VLDB Endowment,
2(1):25–36.

Zhang, K. (1996). A constrained edit distance between un-
ordered labeled trees. Algorithmica, 15(3):205–222.

A CBR MAC/FAC Approach for Cloud Management

129

