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Experience management for task placements in a cloud

Eric Kübler1, Mirjam Minor2

Abstract: The execution of workflows in a cloud is more and more popular, and new business
concept based on this combination emerge. However, the task to control a cloud in such a way, that
the rented cloud resources match the requirements for the currently executed workflows is difficult.
Simple solutions struggle with over-, and under-provisioning problems or lack the needed flexibility
for the new business concepts. A smart concept for cloud management should use knowledge about
the characteristic of the executed task to improve the resource utilization of the cloud. In this paper
we present our approach for a CBR based concept for cloud management that reuses experience on
proper cloud configurations. We introduce our similarity function for task placements in a cloud and
illustrate the approach with some sample workflows form the music mastering domain.
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1 Introduction

Cloud computing offers nearly infinite resources on-demand on a pay as you go pricing
model [MG]. Therefore it is not surprising that more and more business models are based
on the use of cloud computing. One field that can benefit from cloud computing is the
execution of workflows. A workflow is defined by the Workflow Management Coalition
[Co] as "the automation of a business process, in whole or part, during which documents,
information or tasks are passed from one participant to another for action, according to a
set of procedural rules". A tasks, also called activity is defined as follows: A process [...]
consists of one or more activities, each comprising a logical, self-contained unit of work
within the process. An activity represents work, which will be performed by a combination
of resource (specified by participant assignment) and/or computer applications (specified
by application assignment)"[Co, p. 14]. The execution of a workflow in a cloud means that
the cloud provides the workflow with resources and software that are required to complete
the tasks of the workflow. This could be for example the provision of a virtual machine with
an installed office software for a task during that a human actor has to write a letter. Another
example is the deployment of a web server with a certain web service that renders images,
for a task that automatically processes images. We call the assignment of tasks to its cloud
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resources a task placement.
The creation of a task placement can be trivial, if every task just get its own cloud
resources. However, this is very ineffective and will lead to over-provisioning of resources
and consequently to unnecessary costs for the user. The problem of finding an optimal
assignment of tasks to cloud resources, where the resource utilization is optimal, can be
modeled as a bin packing problem, which is NP complete. The problem is even harder,
because the bins (in this case virtual machines or containers like docker) can vary in their
size (different amount of available memory, disk space ...), where the objects (the tasks)
not just have one value for their needed requirement (size), but can have several different
requirements (for CPU, memory, Linux Kernel version, for example), that all need to be
fulfilled. Further, it is not desirable to execute all tasks with the same requirements on
the same resources. This will lead to a state, where the execution of all tasks are slowed
down. This so called under-provisioning can lead to future problems (for example deadline
problems or frustrated users) and should be avoided too. It is required to find a good balance
between over- and under-provisioning of resources [Ar]. To find such a balance is generally
a problem. In general, the management of resources is an important aspect for cloud
computing [Ba]. There are plenty of approaches for cloud management in the literature. The
simplest methods to provide resources is the static way. This means, the system does not
adjust itself to a changing situation. Obviously, this will lead to under- or over-provisioning
[SD]. A more dynamic approach is required. The range for such approaches is great and
spans from rather simple, rule-based approaches such as observations on the number of
open connections [PM] to complex algorithms [Qu].
All of the above approaches have the problem, that they are not very flexible when it comes
to a change of the used cloud or workflow management system. Many do not consider
available knowledge about the tasks and cloud configuration. Thus, it takes quite long to
compute a proper task placement. To handle this complex problem in a reasonable time and
to avoid over- and under-provisioning, it is necessary to use the knowledge about the tasks
to manage the cloud resources properly.
In this paper we introduce a CBR approach for task placements in cloud computing, that
uses knowledge about the tasks and the workflow structure. The idea of CBR is that similar
problems have similar solutions [AP]. The idea of using CBR for cloud management is
not new. The work of Maurer et al. [MBS] applies CBR to implement automatic cloud
management. Aamodt and Plaza describe a case as follows: "In CBR terminology, a case
usually denotes a problem situation. A previously experienced situation, which has been
captured and learned in a way that it can be reused in the solving of future problems"[AP].
In cloud management, this is to reuse problem solving knowledge on the cloud resources. In
this work, a case is a task placement with problems. These problems could be for example
violated Service Level Agreements (SLAs), missing web services or unused resources. A
solution is a new task placement, that solves the problems. A sample solution is a newly
started VM with the missing web service, the shutdown of the unused resources or the
increasing of the resources to avoid future SLA violations. To retrieve similar problems
(cases), a similarity function determines the similarity between two cases. Due to the fact that
CBR only requires the similarity function to receive other, similar problems and their similar
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solution, the time and computational effort is relatively low. We introduce our similarity
function for task placements in cloud computing, discuss in short some alternatives within
the function and give an example how the function will be applied. The CBR approach will
be embedded into our Workflow Cloud Framework (WFCF). WFCF is a connector based
integration framework to integration workflow management tools with cloud computing.

2 Similarity of task placements

In this section we describe the structure of our cases, the MAC/FAC method and the
similarity function for our cases.

2.1 Case representation

As mentioned before, a task placement is the assignment of the currently active tasks to
cloud resources. Fig. 1 gives an example. In this example, the tasks Task2 and Task3 are
active, where Task1 is already done. Task3 is assigned to a container named CON2 where
Task2 is assigned to a VM named V M2 and Task4 is assigend to CON3. Assigned means
that CON2, CON3 and V M2 host the software that the tasks needs to execute, for example
a web service or an Office Suite. The task calls the web service, or the user uses a remote
desktop connection to work with the Office Suite.

Fig. 1: A simple illustration of a task placement with a task assigned to a VM and another to a vm.

A case is a task placement with some problems. This could be for example violations of
Service Level Agreements (SLA) or the violation of internal constraints for example that
there should be no unused cloud resources. The solution is a new task placement that solves
the problems.
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2.2 Relevance of case parts for retrieval

Next, we discuss what should be important for the similarity of two task placements. A task
placement has plenty of parameters that could be considered for the similarity. In this work,
we consider a cloud node either as a virtual machine (VM), or a container. Both have a
set of resources, this can include, but is not limited to, CPU, GPU, memory, disc storage,
network capacity and different kinds of installed software. For comparison, even two cloud
nodes with the same set of resources (same CPU, installed software etc.) could considered
as different, if the resource utilization is different. For example, a cloud node with 4GB of
memory and a utilization of 100% of the memory, should be more similar to a node with
4GB memory and 90% utilization than a node with 4GB memory and a utilization of 10%.
Though, a VM and a container share some attributes, it makes a difference if a Node is a
VM or a Container. For example, a container can be migrated relatively easy from one VM
to another, even if the VMs are hosted on different cloud providers. This is not so easy and
sometimes even impossible for an entire VM. So the solution for a VM can not be always
the migration to an other host, this is possible for a container. In this case, it is necessary
to propagade the new URL or IP address to the workflow. Therefor, to compare two cloud
nodes, it is important to distinguish whether it is a VM or container, to know the set of
resources and the utilization of the hardware resources.
More important than the cloud nodes are the tasks that are currently executed with the
cloud nodes. One of the goals of our WFCF framework is the careful use of cloud resources
for the execution of workflow tasks. Without any task, there is generally no need for any
cloud nodes. That means, that the driving force of the task placement are the tasks. To
determine the needed cloud resources for a task, we introduced in one of our previous
works the concept of task characteristics in cloud computing [KM]. In short, the idea is to
label tasks with its needs and give a hint of the foreseeable resource usage. In our current
work, we extend the idea of characteristics so that for example the characteristic "compute
intensive"now has a value of 0 to 4 to indicate how intensive the task uses the CPU and
not just a binary value of 0 or 1 to determine if the task is compute intensive or not. Other
characteristics that determine if a task is long or short running, were replaced by a values
that contain the minimal, maximal and average execution time.
Another important aspect should be the problems that a placement has. As mentioned before,
this could be for example violations of Service Level Agreements (SLA) or the violation of
internal constraints for example that there should be no clode node active that is not in use.

2.3 MAC/FAC approach

It is clear that this can lead to many parameters to compare for similarity. And at this
point we even haven’t discussed the similarity of sets of tasks and sets of cloud nodes. For
performance reason, we use the MAC/FAC Principle as introduced in [FGL], to distribute
the effort. The idea is to collect fast a set of few promising case candidates (MAC step) and
investigate the similarity of the candidates in more detail in a second step (FAC step).
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As mentioned before, the most important aspect for similarity are the tasks. Therefor in the
MAC step we compare the currently active tasks of the problem case with the currently
active tasks in cases stored in the case base. The currently active tasks is represented by a
set of vectors. At this point it is tempting to define a similarity for two tasks. Since tasks are
Vectors, the hamming distance or the euclidean distance can be used to determine similarity.
But in this case, we have to consider the similarity between two sets of vectors. There are
some metrics for defining the similarity between two sets, for example the Hausdorff metric
[HKR93] or the sum of minimum distances [EM97]. The problem with these heuristics
is, that it is very easy to create a case where the similarity is very high but the sets are by
intuition very dissimilar. For example in one set are only equal tasks. This could be for
example a set with only a single type of image rendering tasks and the other set contains
different tasks but one rendering task and a mapping did map all rendering task of the first
tasks to the single rendering tasks of the second set, then the similarity would be 1 for these
two sets. of course, this is not desired. Another option is not to use a metric for building a
single mapping, but to build all possible mappings for the vectors and chose the mapping
with the minimum weight like the Kuhn-Munkers algorithm [Ku55, Mu57]. Though, this
method is very compute intensive as mentioned in [AFS93].

Our solution for a fast approach that is not that much vulnerable for special cases, uses an
intersection of the task sets to determine the similarity. Let T1 and T2 be a Set of Tasks,

then is the function simT (T1,T2) =
|T1 ∩ T2 |

|T1 ∪ T2 |
. The benefit of this function is, that it covers

the difference between the size of the sets, as well as the actually equal tasks. This will
help in the FAC step to find more relevant task placements in a reasonable amount of
time. Beside the tasks, it is important to consider the problems that a task placement
has. As mentioned before, this could be SLA or constraint violations. The SLAs and
constraints are stored in a a vector, are ordered by name and contains the number of
violations for each SLA or constraint. We call this an SLA vector. To compare two SLA
vectors, we first make sure that both vectors have the same parameters, which means the
same SLAs and constraints. Let slav1 an SLA vector with the sla slav1 = SL A11,Sl A21
and slav2 = Sl A22,SL A32 with the values SL A11 = 1,SL A21 = 3,SL A22 = 2,SL A32 = 1.
In a first step we add in both SLA vectors the missing parameters but set their value to
0. The new vectors are slav′1 = SL A1,Sl A2,SL A3′ and slav′2 = SL A1′,Sl A2,SL A3 with
SL A11 = 1,SL A1′2 = 0,SL A21 = 3,SL A12 = 2,SL A32 = 1,SL A3′1 = 0. Now we can
compute the euclidean distance between two SLA vectors. Let qi ∈ SL A1 and pi ∈ SL A2,

than is the euclidean distance for the SLA vectors dsla(p,q) =
√

1
n

n∑
i=1
(qi − pi)2. The

similarity function is now simsla(slav1, slav2) =
1

1+dsla (slav1 ,slav2)
. The MAC step is a

combination of the similarity of the current active tasks, and the problems, therefore we chose
an aggregated similarity function simmac =

sim(TP1 ,TP2)T=(T1 ,T2)+simsla (slav1 ,slav2)
2 , where

TP1 and TP2 are task placements with T1, slav1 inTP1 and T2, slav2 ∈ TP2. Depending on
the test results, we may add some weights to the components of the similarity function, but
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for now we consider the tasks and the problems as equally important.
After a fast determination of promising candidates, the FAC step compares the candidates
with the current problem situation in more detail. Here is the placement of the tasks, the
resources of the cloud nodes and their utilization important, as well as the question, which
tasks are to be executed next.

2.4 Similarity of tasks in placements

As shown before in Fig. 1, a task placement can be seen as a tree, if all VMs and containers
that are not related to a VM, are assigned to an abstract "hardware"node, as shown in
Fig. 2. This tree is unordered and labeled, where the labels are the resources that a cloud
node contains. Graph isomorphism is NP complete as well known, but to compute the edit
distance between two unordered labeled trees is also NP complete, as shown in [Zh96]. The

Fig. 2: Task placement as tree with hardware as the root and the tasks as leafs

problem is not easier, if we alter the tree and add new nodes with null values for the labels,
to get a more generalized structure as shown in 3. Instead we compare the vector of tasks
and their related cloud nodes. We call this a task_cloud_vector. Such a vector contains a
task, a container and a VM. As mentioned earlier, it is important not to compare containers
with VMs.
A task within the task_cloud_vector is represented by a sub-vector of parameters with their
values, the characteristics and a set of tasks that could be executed next. The idea of this set is to
consider the next tasks for a foresight of the workload that coming next. Therefore we use once
again the euclidean distance to determine the similarity between the two characteristic vectors
and the similarity for intersection for the next tasks. Let T ASK1,T ASK2 are set of tasks and
t1, t2 are vectors of characteristics with t1 ∈ T ASK1, t2 ∈ T ASK2. The euclidean distance is

then defined as dtasks(t1, t2) =
√

1
n

n∑
i=1
(t2i − t1i)2. Let tn1 ∈ T ASK1, tn2 ∈ T ASK1 the set
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Fig. 3: Task placement as tree with the hardware as root and abstract nodes for a more generalized
model

with the next task. The similarity function is now simntask(T1,T2) =
1

1+dt ask (t1,t2) +
|tn1∩tn2 |
|tn1∪tn2 | .

As shown below, we need a distance function for a special algorithm. Therefore we build the
distance function with dntask(T ASK1,T ASK2) = |T ASK1∪T ASK2|− |T ASK1∩T ASK2|.
A cloud node contains its hardware resources, the utilization of the hardware resources and
additional software or information, which are stored as a set of tags. Let cn = (r,u, tag)
describe a cloud node, r is a vector of hardware resources (for example 4 cpu cores, 16GB
Memory ect), u is a vector of resource utilization in percentage and tag is a set of tags (for
example tag = windows8, tomcat7, jre7). For the distance between the resources, we use
once again the euclidean distance dr (r1,r2), as well as for the utilization du(u1,u2). The
similarity functions is then again simr (r1,r2) = 1

1+dr (r1,r2) and simu(u1,u2) = 1
1+du (u1,u2) .

To determine the similarity of the set of tags we build the intersection and compare it
with the merged sets: simtags(tag1, tag2) = |tag1∩tag2 |

|tag1∪tag2 | . Similar to the next task we need a
distance function for the tags: dtags(tag1, tag2) = |tag1 ∪ tag2| − |tag1 ∩ tag2|.

The overall distance function for two task_cloud_vectors is dtcv(tcv1, tcv2) =
d(tags1, tags2) + du(u1,u2) + dr (r1,r2) + dntask(t1, t2). Similar to the MAC step we
might add weights in the future.

2.5 Similarity of entire task placements

After defining the similarity for two task_cloud_vectors, the next step is do define the
similarity between two sets of vectors. For this we have chosen the Kuhn-Munkers algorithm
(also called Hungarian algorithm) as described in [Ku55, Mu57]. This algorithm builds a
minimum weight mapping for bipartite graphs, our in this case between two sets of vectors,
where the edge weight is the distance between two task_cloud_vectors. In a first step a
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Fig. 4: Task placement as paths

distance matrix must be built, that contains the distance from each task_cloud_vector in the
first set to each task_cloud_vector in the second set. The Kuhn-Munkers algorithm requires
a square matrix. If the two sets have a different number of vectors, we add to the smaller set
dummy vectors and set their edge weight to infinite. Because of the strict selection in the
MAC step, based on the intersection of the tasks, there should be not many dummy vectors in
our matrix. After building the matrix, the Kuhn-Munkers algorithm successively improves
the mapping between both sets. We will show a running example in the following section.
To determine the similarity between two sets of vectors, after Kuhn-Munkers has finished,
we build the sum of the edges between the sets is build. Since this is a distance function,
the similarity function for Kuhn-Munkers is simkm(tcv1, tcv2) = 1 − 1

1+dkm(tcv1,tcv2) In
[AFS93] is mentioned, that the run time of Kuhn-Munkers is O(n4) where n is the number
of task_cloud_vectors, but that the run time can be improved to O(n3). This is very compute
intensive, in particular this has to be computed for each candidate, selected during the MAC
step, therefor the selection of the MAC step should be very strict.

3 Illustrating Example

In this section we give a running example of our MAC/FAC similarity function. We use
music mastering workflow as our application domain. An example workflow is given in fig.
5. This workflow contains several different tasks. The tasks sample rate, limiter, normalize,
channels, fading and sample size require all a special web service for their own. For example
the task limiter needs the limiter web service (limiter_ws), where the task channels needs
the channels web service (channel_ws) and so on.

For our current problem case let us assume, that there are two workflow instances currently
executed and therefore two tasks currently active. Fig 6 shows the placement for the problem
situation. The labels vector1 − 3 are important in the FAC step, when we compare the
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Fig. 5: Workflow form the music mastering domain

vectors. The problems in this case are, that the task limiter has no assigned cloud resources,
where vm3 has no assigned task. This is also noted in the SLA_vector. The notation for the
MAC step is for the problem case: problem = (task = ( f ading,normalize), sla_vector =
(missingwebservice,unusedresources)).

In this example the Case Base has stored four old cases, called case1, case2, case3, case4.
For the MAC step we first look at the currently active tasks and the SLA_vector of this
cases.

case1 = (task = (limiter,normalize), slavector = (underprovisioning))

case2 = (task = (limiter, channels), slavector = (missingwebservice))

case3 = (task = (normalize, f ading), slavector = (missingwebservice,unusedresources))

case4 = (task = (samplerat), slavector = (underprovisiong))

The similarity function for the MAC step was: simmac =
sim(TP1 ,TP2)T=(T1 ,T2)+simsla(slav1 ,slav2)

2 .
Table 1 shows the computed similarity of the four cases to the problem case.

Case name similarity
case1 0,5
case2 0,75
case3 0,75
case4 0,0

Tab. 1: Similarity of the cases in the case base to the problem case
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Fig. 6: Task placement of the problem case

In this example, case2 and case3 are chosen for a detail analysis in the FAC step.
The core of the FAC step is the analysis of the task_cloud_vectors and finding a fitting
mapping. Fig. 7 show the task_cloud_vectors for case2 and case3. In a first step we add
to the problem case and the cases stored in the case base, null_tasks, null_container and
null_VM to complete all Task_cloud_Vectors. Then we build the similarity matrix for the
two cases with the problem case. The similarity function for two task_cloud_vector was:
simtcv(tcv1, tcv2) = sim(tags1, tags2) + simu(u1,u2) + simr (r1,r2) + simtask(t1, t2).

As mentioned before, The Kuhn-Munkers algorithm needs a square matrix, therefore we
added to case2 a third (dummy) vector, and set the distance to 999, because the distance
to the dummy vectors should be infinite and therefore not preferable for the algorithm.
The Kuhn-Munkers algorithm next search minimum distance for each column. Next, the
algorithm reduces the value of each element in each column by the column minimum. Next,
the row minimum is formed, similar to the column minimum and each element for each row
is again reduced by the row minimum. In the next step the algorithm searches a combination
of 0, so that each row and each column only contains one 0. Can such a combination found,
that this is the optimal mapping and the algorithm is done. Else, if no valid mapping can be
found at this point, the algorithm next mark the critical rows and columns and determine a
minimum. Table 2 and 3 shows the distance matrix for case2 and case3 as well as the result
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Fig. 7: The task_cloud_vectors stored in the case base

of the Kuhn-Munkers algorithm for our example cases. For example: in case2, vector1 was
mapped to vector1 of the problem case, therefore the distance was bordered. The sum of
chosen mapping is for case217,5 + 0 + 999 = 1016,5 where the distance for case3 to the
problem case is 17,5 + 12 + 0 = 29,5. The most similar case to the problem case is also
case3, which make sense. Both cases have much in common and only small difference in
details.

Vectors Prob case vector1 Prob case vector2 Prob case vector3
Vector1 17,5 25 22

Vector2 12,5 13 0
Vector3 999 999 999

Tab. 2: Distance from the vectors of case2 to the problem case

Vectors Prob case vector1 Prob case vector2 Prob case vector3
Vector1 17,5 25 22

Vector2 41 12 14
Vector3 29,5 28 0

Tab. 3: Distance from the vectors of case3 to the problem case

4 Conclusion

In this paper we presented our MAC/FAC approach for task placements in cloud computing
and illustrated it with an example. The basic idea is to reuse problem solving knowledge
from past task placements in order to mend SLA violations in recent task placements. Our
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MAC/FAC approach provides an efficient means to retrieve matching task placements. The
concept of using this knowledge management approach for cloud management is promising.
An illustrating example from the music mastering domain achieved good retrieval results.
Even for a relatively complex query the results have been plausible; the best matching
case indeed was very useful to solve the sample problem case. The insights from this
realistic scenario serve as a preliminary proof-of-concept. However, experiments with a
larger case base than in the illustrating example are required to provide further evidence for
the feasibility of the approach. The improvement of the similarity functions by weights is a
further issue. Our next steps are to implement the similarity functions and to conduct more
experiments with WFCF.
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